llvm-mirror/tools/lli/lli.cpp
Chandler Carruth 4c1f3c24db Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

llvm-svn: 171366
2013-01-02 11:36:10 +00:00

533 lines
18 KiB
C++

//===- lli.cpp - LLVM Interpreter / Dynamic compiler ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This utility provides a simple wrapper around the LLVM Execution Engines,
// which allow the direct execution of LLVM programs through a Just-In-Time
// compiler, or through an interpreter if no JIT is available for this platform.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "lli"
#include "llvm/IR/LLVMContext.h"
#include "RecordingMemoryManager.h"
#include "RemoteTarget.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/CodeGen/LinkAllCodegenComponents.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/Interpreter.h"
#include "llvm/ExecutionEngine/JIT.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/IRReader.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PluginLoader.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <cerrno>
#ifdef __CYGWIN__
#include <cygwin/version.h>
#if defined(CYGWIN_VERSION_DLL_MAJOR) && CYGWIN_VERSION_DLL_MAJOR<1007
#define DO_NOTHING_ATEXIT 1
#endif
#endif
using namespace llvm;
namespace {
cl::opt<std::string>
InputFile(cl::desc("<input bitcode>"), cl::Positional, cl::init("-"));
cl::list<std::string>
InputArgv(cl::ConsumeAfter, cl::desc("<program arguments>..."));
cl::opt<bool> ForceInterpreter("force-interpreter",
cl::desc("Force interpretation: disable JIT"),
cl::init(false));
cl::opt<bool> UseMCJIT(
"use-mcjit", cl::desc("Enable use of the MC-based JIT (if available)"),
cl::init(false));
// The MCJIT supports building for a target address space separate from
// the JIT compilation process. Use a forked process and a copying
// memory manager with IPC to execute using this functionality.
cl::opt<bool> RemoteMCJIT("remote-mcjit",
cl::desc("Execute MCJIT'ed code in a separate process."),
cl::init(false));
// Determine optimization level.
cl::opt<char>
OptLevel("O",
cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] "
"(default = '-O2')"),
cl::Prefix,
cl::ZeroOrMore,
cl::init(' '));
cl::opt<std::string>
TargetTriple("mtriple", cl::desc("Override target triple for module"));
cl::opt<std::string>
MArch("march",
cl::desc("Architecture to generate assembly for (see --version)"));
cl::opt<std::string>
MCPU("mcpu",
cl::desc("Target a specific cpu type (-mcpu=help for details)"),
cl::value_desc("cpu-name"),
cl::init(""));
cl::list<std::string>
MAttrs("mattr",
cl::CommaSeparated,
cl::desc("Target specific attributes (-mattr=help for details)"),
cl::value_desc("a1,+a2,-a3,..."));
cl::opt<std::string>
EntryFunc("entry-function",
cl::desc("Specify the entry function (default = 'main') "
"of the executable"),
cl::value_desc("function"),
cl::init("main"));
cl::opt<std::string>
FakeArgv0("fake-argv0",
cl::desc("Override the 'argv[0]' value passed into the executing"
" program"), cl::value_desc("executable"));
cl::opt<bool>
DisableCoreFiles("disable-core-files", cl::Hidden,
cl::desc("Disable emission of core files if possible"));
cl::opt<bool>
NoLazyCompilation("disable-lazy-compilation",
cl::desc("Disable JIT lazy compilation"),
cl::init(false));
cl::opt<Reloc::Model>
RelocModel("relocation-model",
cl::desc("Choose relocation model"),
cl::init(Reloc::Default),
cl::values(
clEnumValN(Reloc::Default, "default",
"Target default relocation model"),
clEnumValN(Reloc::Static, "static",
"Non-relocatable code"),
clEnumValN(Reloc::PIC_, "pic",
"Fully relocatable, position independent code"),
clEnumValN(Reloc::DynamicNoPIC, "dynamic-no-pic",
"Relocatable external references, non-relocatable code"),
clEnumValEnd));
cl::opt<llvm::CodeModel::Model>
CMModel("code-model",
cl::desc("Choose code model"),
cl::init(CodeModel::JITDefault),
cl::values(clEnumValN(CodeModel::JITDefault, "default",
"Target default JIT code model"),
clEnumValN(CodeModel::Small, "small",
"Small code model"),
clEnumValN(CodeModel::Kernel, "kernel",
"Kernel code model"),
clEnumValN(CodeModel::Medium, "medium",
"Medium code model"),
clEnumValN(CodeModel::Large, "large",
"Large code model"),
clEnumValEnd));
cl::opt<bool>
EnableJITExceptionHandling("jit-enable-eh",
cl::desc("Emit exception handling information"),
cl::init(false));
cl::opt<bool>
GenerateSoftFloatCalls("soft-float",
cl::desc("Generate software floating point library calls"),
cl::init(false));
cl::opt<llvm::FloatABI::ABIType>
FloatABIForCalls("float-abi",
cl::desc("Choose float ABI type"),
cl::init(FloatABI::Default),
cl::values(
clEnumValN(FloatABI::Default, "default",
"Target default float ABI type"),
clEnumValN(FloatABI::Soft, "soft",
"Soft float ABI (implied by -soft-float)"),
clEnumValN(FloatABI::Hard, "hard",
"Hard float ABI (uses FP registers)"),
clEnumValEnd));
cl::opt<bool>
// In debug builds, make this default to true.
#ifdef NDEBUG
#define EMIT_DEBUG false
#else
#define EMIT_DEBUG true
#endif
EmitJitDebugInfo("jit-emit-debug",
cl::desc("Emit debug information to debugger"),
cl::init(EMIT_DEBUG));
#undef EMIT_DEBUG
static cl::opt<bool>
EmitJitDebugInfoToDisk("jit-emit-debug-to-disk",
cl::Hidden,
cl::desc("Emit debug info objfiles to disk"),
cl::init(false));
}
static ExecutionEngine *EE = 0;
static void do_shutdown() {
// Cygwin-1.5 invokes DLL's dtors before atexit handler.
#ifndef DO_NOTHING_ATEXIT
delete EE;
llvm_shutdown();
#endif
}
void layoutRemoteTargetMemory(RemoteTarget *T, RecordingMemoryManager *JMM) {
// Lay out our sections in order, with all the code sections first, then
// all the data sections.
uint64_t CurOffset = 0;
unsigned MaxAlign = T->getPageAlignment();
SmallVector<std::pair<const void*, uint64_t>, 16> Offsets;
SmallVector<unsigned, 16> Sizes;
for (RecordingMemoryManager::const_code_iterator I = JMM->code_begin(),
E = JMM->code_end();
I != E; ++I) {
DEBUG(dbgs() << "code region: size " << I->first.size()
<< ", alignment " << I->second << "\n");
// Align the current offset up to whatever is needed for the next
// section.
unsigned Align = I->second;
CurOffset = (CurOffset + Align - 1) / Align * Align;
// Save off the address of the new section and allocate its space.
Offsets.push_back(std::pair<const void*,uint64_t>(I->first.base(), CurOffset));
Sizes.push_back(I->first.size());
CurOffset += I->first.size();
}
// Adjust to keep code and data aligned on seperate pages.
CurOffset = (CurOffset + MaxAlign - 1) / MaxAlign * MaxAlign;
unsigned FirstDataIndex = Offsets.size();
for (RecordingMemoryManager::const_data_iterator I = JMM->data_begin(),
E = JMM->data_end();
I != E; ++I) {
DEBUG(dbgs() << "data region: size " << I->first.size()
<< ", alignment " << I->second << "\n");
// Align the current offset up to whatever is needed for the next
// section.
unsigned Align = I->second;
CurOffset = (CurOffset + Align - 1) / Align * Align;
// Save off the address of the new section and allocate its space.
Offsets.push_back(std::pair<const void*,uint64_t>(I->first.base(), CurOffset));
Sizes.push_back(I->first.size());
CurOffset += I->first.size();
}
// Allocate space in the remote target.
uint64_t RemoteAddr;
if (T->allocateSpace(CurOffset, MaxAlign, RemoteAddr))
report_fatal_error(T->getErrorMsg());
// Map the section addresses so relocations will get updated in the local
// copies of the sections.
for (unsigned i = 0, e = Offsets.size(); i != e; ++i) {
uint64_t Addr = RemoteAddr + Offsets[i].second;
EE->mapSectionAddress(const_cast<void*>(Offsets[i].first), Addr);
DEBUG(dbgs() << " Mapping local: " << Offsets[i].first
<< " to remote: " << format("%p", Addr) << "\n");
}
// Trigger application of relocations
EE->finalizeObject();
// Now load it all to the target.
for (unsigned i = 0, e = Offsets.size(); i != e; ++i) {
uint64_t Addr = RemoteAddr + Offsets[i].second;
if (i < FirstDataIndex) {
T->loadCode(Addr, Offsets[i].first, Sizes[i]);
DEBUG(dbgs() << " loading code: " << Offsets[i].first
<< " to remote: " << format("%p", Addr) << "\n");
} else {
T->loadData(Addr, Offsets[i].first, Sizes[i]);
DEBUG(dbgs() << " loading data: " << Offsets[i].first
<< " to remote: " << format("%p", Addr) << "\n");
}
}
}
//===----------------------------------------------------------------------===//
// main Driver function
//
int main(int argc, char **argv, char * const *envp) {
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
LLVMContext &Context = getGlobalContext();
atexit(do_shutdown); // Call llvm_shutdown() on exit.
// If we have a native target, initialize it to ensure it is linked in and
// usable by the JIT.
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();
cl::ParseCommandLineOptions(argc, argv,
"llvm interpreter & dynamic compiler\n");
// If the user doesn't want core files, disable them.
if (DisableCoreFiles)
sys::Process::PreventCoreFiles();
// Load the bitcode...
SMDiagnostic Err;
Module *Mod = ParseIRFile(InputFile, Err, Context);
if (!Mod) {
Err.print(argv[0], errs());
return 1;
}
// If not jitting lazily, load the whole bitcode file eagerly too.
std::string ErrorMsg;
if (NoLazyCompilation) {
if (Mod->MaterializeAllPermanently(&ErrorMsg)) {
errs() << argv[0] << ": bitcode didn't read correctly.\n";
errs() << "Reason: " << ErrorMsg << "\n";
exit(1);
}
}
EngineBuilder builder(Mod);
builder.setMArch(MArch);
builder.setMCPU(MCPU);
builder.setMAttrs(MAttrs);
builder.setRelocationModel(RelocModel);
builder.setCodeModel(CMModel);
builder.setErrorStr(&ErrorMsg);
builder.setEngineKind(ForceInterpreter
? EngineKind::Interpreter
: EngineKind::JIT);
// If we are supposed to override the target triple, do so now.
if (!TargetTriple.empty())
Mod->setTargetTriple(Triple::normalize(TargetTriple));
// Enable MCJIT if desired.
JITMemoryManager *JMM = 0;
if (UseMCJIT && !ForceInterpreter) {
builder.setUseMCJIT(true);
if (RemoteMCJIT)
JMM = new RecordingMemoryManager();
else
JMM = new SectionMemoryManager();
builder.setJITMemoryManager(JMM);
} else {
if (RemoteMCJIT) {
errs() << "error: Remote process execution requires -use-mcjit\n";
exit(1);
}
builder.setJITMemoryManager(ForceInterpreter ? 0 :
JITMemoryManager::CreateDefaultMemManager());
}
CodeGenOpt::Level OLvl = CodeGenOpt::Default;
switch (OptLevel) {
default:
errs() << argv[0] << ": invalid optimization level.\n";
return 1;
case ' ': break;
case '0': OLvl = CodeGenOpt::None; break;
case '1': OLvl = CodeGenOpt::Less; break;
case '2': OLvl = CodeGenOpt::Default; break;
case '3': OLvl = CodeGenOpt::Aggressive; break;
}
builder.setOptLevel(OLvl);
TargetOptions Options;
Options.UseSoftFloat = GenerateSoftFloatCalls;
if (FloatABIForCalls != FloatABI::Default)
Options.FloatABIType = FloatABIForCalls;
if (GenerateSoftFloatCalls)
FloatABIForCalls = FloatABI::Soft;
// Remote target execution doesn't handle EH or debug registration.
if (!RemoteMCJIT) {
Options.JITExceptionHandling = EnableJITExceptionHandling;
Options.JITEmitDebugInfo = EmitJitDebugInfo;
Options.JITEmitDebugInfoToDisk = EmitJitDebugInfoToDisk;
}
builder.setTargetOptions(Options);
EE = builder.create();
if (!EE) {
if (!ErrorMsg.empty())
errs() << argv[0] << ": error creating EE: " << ErrorMsg << "\n";
else
errs() << argv[0] << ": unknown error creating EE!\n";
exit(1);
}
// The following functions have no effect if their respective profiling
// support wasn't enabled in the build configuration.
EE->RegisterJITEventListener(
JITEventListener::createOProfileJITEventListener());
EE->RegisterJITEventListener(
JITEventListener::createIntelJITEventListener());
if (!NoLazyCompilation && RemoteMCJIT) {
errs() << "warning: remote mcjit does not support lazy compilation\n";
NoLazyCompilation = true;
}
EE->DisableLazyCompilation(NoLazyCompilation);
// If the user specifically requested an argv[0] to pass into the program,
// do it now.
if (!FakeArgv0.empty()) {
InputFile = FakeArgv0;
} else {
// Otherwise, if there is a .bc suffix on the executable strip it off, it
// might confuse the program.
if (StringRef(InputFile).endswith(".bc"))
InputFile.erase(InputFile.length() - 3);
}
// Add the module's name to the start of the vector of arguments to main().
InputArgv.insert(InputArgv.begin(), InputFile);
// Call the main function from M as if its signature were:
// int main (int argc, char **argv, const char **envp)
// using the contents of Args to determine argc & argv, and the contents of
// EnvVars to determine envp.
//
Function *EntryFn = Mod->getFunction(EntryFunc);
if (!EntryFn) {
errs() << '\'' << EntryFunc << "\' function not found in module.\n";
return -1;
}
// If the program doesn't explicitly call exit, we will need the Exit
// function later on to make an explicit call, so get the function now.
Constant *Exit = Mod->getOrInsertFunction("exit", Type::getVoidTy(Context),
Type::getInt32Ty(Context),
NULL);
// Reset errno to zero on entry to main.
errno = 0;
// Remote target MCJIT doesn't (yet) support static constructors. No reason
// it couldn't. This is a limitation of the LLI implemantation, not the
// MCJIT itself. FIXME.
//
// Run static constructors.
if (!RemoteMCJIT) {
if (UseMCJIT && !ForceInterpreter) {
// Give MCJIT a chance to apply relocations and set page permissions.
EE->finalizeObject();
}
EE->runStaticConstructorsDestructors(false);
}
if (NoLazyCompilation) {
for (Module::iterator I = Mod->begin(), E = Mod->end(); I != E; ++I) {
Function *Fn = &*I;
if (Fn != EntryFn && !Fn->isDeclaration())
EE->getPointerToFunction(Fn);
}
}
int Result;
if (RemoteMCJIT) {
RecordingMemoryManager *MM = static_cast<RecordingMemoryManager*>(JMM);
// Everything is prepared now, so lay out our program for the target
// address space, assign the section addresses to resolve any relocations,
// and send it to the target.
RemoteTarget Target;
Target.create();
// Ask for a pointer to the entry function. This triggers the actual
// compilation.
(void)EE->getPointerToFunction(EntryFn);
// Enough has been compiled to execute the entry function now, so
// layout the target memory.
layoutRemoteTargetMemory(&Target, MM);
// Since we're executing in a (at least simulated) remote address space,
// we can't use the ExecutionEngine::runFunctionAsMain(). We have to
// grab the function address directly here and tell the remote target
// to execute the function.
// FIXME: argv and envp handling.
uint64_t Entry = (uint64_t)EE->getPointerToFunction(EntryFn);
DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at "
<< format("%p", Entry) << "\n");
if (Target.executeCode(Entry, Result))
errs() << "ERROR: " << Target.getErrorMsg() << "\n";
Target.stop();
} else {
// Trigger compilation separately so code regions that need to be
// invalidated will be known.
(void)EE->getPointerToFunction(EntryFn);
// Clear instruction cache before code will be executed.
if (JMM)
static_cast<SectionMemoryManager*>(JMM)->invalidateInstructionCache();
// Run main.
Result = EE->runFunctionAsMain(EntryFn, InputArgv, envp);
}
// Like static constructors, the remote target MCJIT support doesn't handle
// this yet. It could. FIXME.
if (!RemoteMCJIT) {
// Run static destructors.
EE->runStaticConstructorsDestructors(true);
// If the program didn't call exit explicitly, we should call it now.
// This ensures that any atexit handlers get called correctly.
if (Function *ExitF = dyn_cast<Function>(Exit)) {
std::vector<GenericValue> Args;
GenericValue ResultGV;
ResultGV.IntVal = APInt(32, Result);
Args.push_back(ResultGV);
EE->runFunction(ExitF, Args);
errs() << "ERROR: exit(" << Result << ") returned!\n";
abort();
} else {
errs() << "ERROR: exit defined with wrong prototype!\n";
abort();
}
}
return Result;
}