mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-09 13:21:30 +00:00
0b6cdd1eff
Parse reversed smax and umax as smin and umin and express them with negative or binary-not SCEVs (which are really just subtract under the hood). Parse 'xor %x, -1' as (-1 - %x). Remove dead code (ConstantInt::get always returns a ConstantInt). Don't use getIntegerSCEV(-1, Ty). The first value is an int, then it gets passed into a uint64_t. Instead, create the -1 directly from ConstantInt::getAllOnesValue(). llvm-svn: 47360
149 lines
5.3 KiB
C++
149 lines
5.3 KiB
C++
//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the classes used to generate code from scalar expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H
|
|
#define LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H
|
|
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Support/CFG.h"
|
|
|
|
namespace llvm {
|
|
/// SCEVExpander - This class uses information about analyze scalars to
|
|
/// rewrite expressions in canonical form.
|
|
///
|
|
/// Clients should create an instance of this class when rewriting is needed,
|
|
/// and destroy it when finished to allow the release of the associated
|
|
/// memory.
|
|
struct SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
|
|
ScalarEvolution &SE;
|
|
LoopInfo &LI;
|
|
std::map<SCEVHandle, Value*> InsertedExpressions;
|
|
std::set<Instruction*> InsertedInstructions;
|
|
|
|
Instruction *InsertPt;
|
|
|
|
friend struct SCEVVisitor<SCEVExpander, Value*>;
|
|
public:
|
|
SCEVExpander(ScalarEvolution &se, LoopInfo &li) : SE(se), LI(li) {}
|
|
|
|
LoopInfo &getLoopInfo() const { return LI; }
|
|
|
|
/// clear - Erase the contents of the InsertedExpressions map so that users
|
|
/// trying to expand the same expression into multiple BasicBlocks or
|
|
/// different places within the same BasicBlock can do so.
|
|
void clear() { InsertedExpressions.clear(); }
|
|
|
|
/// isInsertedInstruction - Return true if the specified instruction was
|
|
/// inserted by the code rewriter. If so, the client should not modify the
|
|
/// instruction.
|
|
bool isInsertedInstruction(Instruction *I) const {
|
|
return InsertedInstructions.count(I);
|
|
}
|
|
|
|
/// getOrInsertCanonicalInductionVariable - This method returns the
|
|
/// canonical induction variable of the specified type for the specified
|
|
/// loop (inserting one if there is none). A canonical induction variable
|
|
/// starts at zero and steps by one on each iteration.
|
|
Value *getOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty){
|
|
assert(Ty->isInteger() && "Can only insert integer induction variables!");
|
|
SCEVHandle H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
|
|
SE.getIntegerSCEV(1, Ty), L);
|
|
return expand(H);
|
|
}
|
|
|
|
/// addInsertedValue - Remember the specified instruction as being the
|
|
/// canonical form for the specified SCEV.
|
|
void addInsertedValue(Instruction *I, SCEV *S) {
|
|
InsertedExpressions[S] = (Value*)I;
|
|
InsertedInstructions.insert(I);
|
|
}
|
|
|
|
Instruction *getInsertionPoint() const { return InsertPt; }
|
|
|
|
/// expandCodeFor - Insert code to directly compute the specified SCEV
|
|
/// expression into the program. The inserted code is inserted into the
|
|
/// specified block.
|
|
Value *expandCodeFor(SCEVHandle SH, Instruction *IP) {
|
|
// Expand the code for this SCEV.
|
|
this->InsertPt = IP;
|
|
return expand(SH);
|
|
}
|
|
|
|
/// InsertCastOfTo - Insert a cast of V to the specified type, doing what
|
|
/// we can to share the casts.
|
|
static Value *InsertCastOfTo(Instruction::CastOps opcode, Value *V,
|
|
const Type *Ty);
|
|
/// InsertBinop - Insert the specified binary operator, doing a small amount
|
|
/// of work to avoid inserting an obviously redundant operation.
|
|
static Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS,
|
|
Value *RHS, Instruction *&InsertPt);
|
|
protected:
|
|
Value *expand(SCEV *S);
|
|
|
|
Value *visitConstant(SCEVConstant *S) {
|
|
return S->getValue();
|
|
}
|
|
|
|
Value *visitTruncateExpr(SCEVTruncateExpr *S) {
|
|
Value *V = expand(S->getOperand());
|
|
return CastInst::createTruncOrBitCast(V, S->getType(), "tmp.", InsertPt);
|
|
}
|
|
|
|
Value *visitZeroExtendExpr(SCEVZeroExtendExpr *S) {
|
|
Value *V = expand(S->getOperand());
|
|
return CastInst::createZExtOrBitCast(V, S->getType(), "tmp.", InsertPt);
|
|
}
|
|
|
|
Value *visitSignExtendExpr(SCEVSignExtendExpr *S) {
|
|
Value *V = expand(S->getOperand());
|
|
return CastInst::createSExtOrBitCast(V, S->getType(), "tmp.", InsertPt);
|
|
}
|
|
|
|
Value *visitAddExpr(SCEVAddExpr *S) {
|
|
Value *V = expand(S->getOperand(S->getNumOperands()-1));
|
|
|
|
// Emit a bunch of add instructions
|
|
for (int i = S->getNumOperands()-2; i >= 0; --i)
|
|
V = InsertBinop(Instruction::Add, V, expand(S->getOperand(i)),
|
|
InsertPt);
|
|
return V;
|
|
}
|
|
|
|
Value *visitMulExpr(SCEVMulExpr *S);
|
|
|
|
Value *visitUDivExpr(SCEVUDivExpr *S) {
|
|
Value *LHS = expand(S->getLHS());
|
|
Value *RHS = expand(S->getRHS());
|
|
return InsertBinop(Instruction::UDiv, LHS, RHS, InsertPt);
|
|
}
|
|
|
|
Value *visitAddRecExpr(SCEVAddRecExpr *S);
|
|
|
|
Value *visitSMaxExpr(SCEVSMaxExpr *S);
|
|
|
|
Value *visitUMaxExpr(SCEVUMaxExpr *S);
|
|
|
|
Value *visitUnknown(SCEVUnknown *S) {
|
|
return S->getValue();
|
|
}
|
|
};
|
|
}
|
|
|
|
#endif
|
|
|