llvm-mirror/include/llvm/Analysis/ScalarEvolutionExpander.h
Dan Gohman 66b6f7d702 Use AssertingVH for InsertedValues and InsertedPostIncValues, to verify
that the values they refer to aren't being deleted underneath them.

Make sure these containters get cleared by clear(), which IndVarSimplify
and LSR both use before deleting instructions.

llvm-svn: 109478
2010-07-27 01:19:06 +00:00

210 lines
8.2 KiB
C++

//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the classes used to generate code from scalar expressions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H
#define LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ScalarEvolutionNormalization.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/TargetFolder.h"
#include "llvm/Support/ValueHandle.h"
#include <set>
namespace llvm {
/// SCEVExpander - This class uses information about analyze scalars to
/// rewrite expressions in canonical form.
///
/// Clients should create an instance of this class when rewriting is needed,
/// and destroy it when finished to allow the release of the associated
/// memory.
class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
ScalarEvolution &SE;
std::map<std::pair<const SCEV *, Instruction *>, AssertingVH<Value> >
InsertedExpressions;
std::set<AssertingVH<Value> > InsertedValues;
std::set<AssertingVH<Value> > InsertedPostIncValues;
/// PostIncLoops - Addrecs referring to any of the given loops are expanded
/// in post-inc mode. For example, expanding {1,+,1}<L> in post-inc mode
/// returns the add instruction that adds one to the phi for {0,+,1}<L>,
/// as opposed to a new phi starting at 1. This is only supported in
/// non-canonical mode.
PostIncLoopSet PostIncLoops;
/// IVIncInsertPos - When this is non-null, addrecs expanded in the
/// loop it indicates should be inserted with increments at
/// IVIncInsertPos.
const Loop *IVIncInsertLoop;
/// IVIncInsertPos - When expanding addrecs in the IVIncInsertLoop loop,
/// insert the IV increment at this position.
Instruction *IVIncInsertPos;
/// CanonicalMode - When true, expressions are expanded in "canonical"
/// form. In particular, addrecs are expanded as arithmetic based on
/// a canonical induction variable. When false, expression are expanded
/// in a more literal form.
bool CanonicalMode;
typedef IRBuilder<true, TargetFolder> BuilderType;
BuilderType Builder;
friend struct SCEVVisitor<SCEVExpander, Value*>;
public:
/// SCEVExpander - Construct a SCEVExpander in "canonical" mode.
explicit SCEVExpander(ScalarEvolution &se)
: SE(se), IVIncInsertLoop(0), CanonicalMode(true),
Builder(se.getContext(), TargetFolder(se.TD)) {}
/// clear - Erase the contents of the InsertedExpressions map so that users
/// trying to expand the same expression into multiple BasicBlocks or
/// different places within the same BasicBlock can do so.
void clear() {
InsertedExpressions.clear();
InsertedValues.clear();
InsertedPostIncValues.clear();
}
/// getOrInsertCanonicalInductionVariable - This method returns the
/// canonical induction variable of the specified type for the specified
/// loop (inserting one if there is none). A canonical induction variable
/// starts at zero and steps by one on each iteration.
PHINode *getOrInsertCanonicalInductionVariable(const Loop *L,
const Type *Ty);
/// expandCodeFor - Insert code to directly compute the specified SCEV
/// expression into the program. The inserted code is inserted into the
/// specified block.
Value *expandCodeFor(const SCEV *SH, const Type *Ty, Instruction *I);
/// setIVIncInsertPos - Set the current IV increment loop and position.
void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
assert(!CanonicalMode &&
"IV increment positions are not supported in CanonicalMode");
IVIncInsertLoop = L;
IVIncInsertPos = Pos;
}
/// setPostInc - Enable post-inc expansion for addrecs referring to the
/// given loops. Post-inc expansion is only supported in non-canonical
/// mode.
void setPostInc(const PostIncLoopSet &L) {
assert(!CanonicalMode &&
"Post-inc expansion is not supported in CanonicalMode");
PostIncLoops = L;
}
/// clearPostInc - Disable all post-inc expansion.
void clearPostInc() {
PostIncLoops.clear();
// When we change the post-inc loop set, cached expansions may no
// longer be valid.
InsertedPostIncValues.clear();
}
/// disableCanonicalMode - Disable the behavior of expanding expressions in
/// canonical form rather than in a more literal form. Non-canonical mode
/// is useful for late optimization passes.
void disableCanonicalMode() { CanonicalMode = false; }
/// clearInsertPoint - Clear the current insertion point. This is useful
/// if the instruction that had been serving as the insertion point may
/// have been deleted.
void clearInsertPoint() {
Builder.ClearInsertionPoint();
}
private:
LLVMContext &getContext() const { return SE.getContext(); }
/// InsertBinop - Insert the specified binary operator, doing a small amount
/// of work to avoid inserting an obviously redundant operation.
Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS);
/// ReuseOrCreateCast - Arange for there to be a cast of V to Ty at IP,
/// reusing an existing cast if a suitable one exists, moving an existing
/// cast if a suitable one exists but isn't in the right place, or
/// or creating a new one.
Value *ReuseOrCreateCast(Value *V, const Type *Ty,
Instruction::CastOps Op,
BasicBlock::iterator IP);
/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
/// which must be possible with a noop cast, doing what we can to
/// share the casts.
Value *InsertNoopCastOfTo(Value *V, const Type *Ty);
/// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP
/// instead of using ptrtoint+arithmetic+inttoptr.
Value *expandAddToGEP(const SCEV *const *op_begin,
const SCEV *const *op_end,
const PointerType *PTy, const Type *Ty, Value *V);
Value *expand(const SCEV *S);
/// expandCodeFor - Insert code to directly compute the specified SCEV
/// expression into the program. The inserted code is inserted into the
/// SCEVExpander's current insertion point. If a type is specified, the
/// result will be expanded to have that type, with a cast if necessary.
Value *expandCodeFor(const SCEV *SH, const Type *Ty = 0);
/// isInsertedInstruction - Return true if the specified instruction was
/// inserted by the code rewriter. If so, the client should not modify the
/// instruction.
bool isInsertedInstruction(Instruction *I) const {
return InsertedValues.count(I) || InsertedPostIncValues.count(I);
}
Value *visitConstant(const SCEVConstant *S) {
return S->getValue();
}
Value *visitTruncateExpr(const SCEVTruncateExpr *S);
Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
Value *visitAddExpr(const SCEVAddExpr *S);
Value *visitMulExpr(const SCEVMulExpr *S);
Value *visitUDivExpr(const SCEVUDivExpr *S);
Value *visitAddRecExpr(const SCEVAddRecExpr *S);
Value *visitSMaxExpr(const SCEVSMaxExpr *S);
Value *visitUMaxExpr(const SCEVUMaxExpr *S);
Value *visitUnknown(const SCEVUnknown *S) {
return S->getValue();
}
void rememberInstruction(Value *I);
void restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I);
Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
const Loop *L,
const Type *ExpandTy,
const Type *IntTy);
};
}
#endif