llvm-mirror/lib/CodeGen/StackMaps.cpp
Zachary Turner dec9bd8187 Mark all library options as hidden.
These command line options are not intended for public use, and often
don't even make sense in the context of a particular tool anyway. About
90% of them are already hidden, but when people add new options they
forget to hide them, so if you were to make a brand new tool today, link
against one of LLVM's libraries, and run tool -help you would get a
bunch of junk that doesn't make sense for the tool you're writing.

This patch hides these options. The real solution is to not have
libraries defining command line options, but that's a much larger effort
and not something I'm prepared to take on.

Differential Revision: https://reviews.llvm.org/D40674

llvm-svn: 319505
2017-12-01 00:53:10 +00:00

583 lines
20 KiB
C++

//===- StackMaps.cpp ------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "stackmaps"
static cl::opt<int> StackMapVersion(
"stackmap-version", cl::init(3), cl::Hidden,
cl::desc("Specify the stackmap encoding version (default = 3)"));
const char *StackMaps::WSMP = "Stack Maps: ";
StackMapOpers::StackMapOpers(const MachineInstr *MI)
: MI(MI) {
assert(getVarIdx() <= MI->getNumOperands() &&
"invalid stackmap definition");
}
PatchPointOpers::PatchPointOpers(const MachineInstr *MI)
: MI(MI), HasDef(MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
!MI->getOperand(0).isImplicit()) {
#ifndef NDEBUG
unsigned CheckStartIdx = 0, e = MI->getNumOperands();
while (CheckStartIdx < e && MI->getOperand(CheckStartIdx).isReg() &&
MI->getOperand(CheckStartIdx).isDef() &&
!MI->getOperand(CheckStartIdx).isImplicit())
++CheckStartIdx;
assert(getMetaIdx() == CheckStartIdx &&
"Unexpected additional definition in Patchpoint intrinsic.");
#endif
}
unsigned PatchPointOpers::getNextScratchIdx(unsigned StartIdx) const {
if (!StartIdx)
StartIdx = getVarIdx();
// Find the next scratch register (implicit def and early clobber)
unsigned ScratchIdx = StartIdx, e = MI->getNumOperands();
while (ScratchIdx < e &&
!(MI->getOperand(ScratchIdx).isReg() &&
MI->getOperand(ScratchIdx).isDef() &&
MI->getOperand(ScratchIdx).isImplicit() &&
MI->getOperand(ScratchIdx).isEarlyClobber()))
++ScratchIdx;
assert(ScratchIdx != e && "No scratch register available");
return ScratchIdx;
}
StackMaps::StackMaps(AsmPrinter &AP) : AP(AP) {
if (StackMapVersion != 3)
llvm_unreachable("Unsupported stackmap version!");
}
/// Go up the super-register chain until we hit a valid dwarf register number.
static unsigned getDwarfRegNum(unsigned Reg, const TargetRegisterInfo *TRI) {
int RegNum = TRI->getDwarfRegNum(Reg, false);
for (MCSuperRegIterator SR(Reg, TRI); SR.isValid() && RegNum < 0; ++SR)
RegNum = TRI->getDwarfRegNum(*SR, false);
assert(RegNum >= 0 && "Invalid Dwarf register number.");
return (unsigned)RegNum;
}
MachineInstr::const_mop_iterator
StackMaps::parseOperand(MachineInstr::const_mop_iterator MOI,
MachineInstr::const_mop_iterator MOE, LocationVec &Locs,
LiveOutVec &LiveOuts) const {
const TargetRegisterInfo *TRI = AP.MF->getSubtarget().getRegisterInfo();
if (MOI->isImm()) {
switch (MOI->getImm()) {
default:
llvm_unreachable("Unrecognized operand type.");
case StackMaps::DirectMemRefOp: {
auto &DL = AP.MF->getDataLayout();
unsigned Size = DL.getPointerSizeInBits();
assert((Size % 8) == 0 && "Need pointer size in bytes.");
Size /= 8;
unsigned Reg = (++MOI)->getReg();
int64_t Imm = (++MOI)->getImm();
Locs.emplace_back(StackMaps::Location::Direct, Size,
getDwarfRegNum(Reg, TRI), Imm);
break;
}
case StackMaps::IndirectMemRefOp: {
int64_t Size = (++MOI)->getImm();
assert(Size > 0 && "Need a valid size for indirect memory locations.");
unsigned Reg = (++MOI)->getReg();
int64_t Imm = (++MOI)->getImm();
Locs.emplace_back(StackMaps::Location::Indirect, Size,
getDwarfRegNum(Reg, TRI), Imm);
break;
}
case StackMaps::ConstantOp: {
++MOI;
assert(MOI->isImm() && "Expected constant operand.");
int64_t Imm = MOI->getImm();
Locs.emplace_back(Location::Constant, sizeof(int64_t), 0, Imm);
break;
}
}
return ++MOI;
}
// The physical register number will ultimately be encoded as a DWARF regno.
// The stack map also records the size of a spill slot that can hold the
// register content. (The runtime can track the actual size of the data type
// if it needs to.)
if (MOI->isReg()) {
// Skip implicit registers (this includes our scratch registers)
if (MOI->isImplicit())
return ++MOI;
assert(TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) &&
"Virtreg operands should have been rewritten before now.");
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(MOI->getReg());
assert(!MOI->getSubReg() && "Physical subreg still around.");
unsigned Offset = 0;
unsigned DwarfRegNum = getDwarfRegNum(MOI->getReg(), TRI);
unsigned LLVMRegNum = TRI->getLLVMRegNum(DwarfRegNum, false);
unsigned SubRegIdx = TRI->getSubRegIndex(LLVMRegNum, MOI->getReg());
if (SubRegIdx)
Offset = TRI->getSubRegIdxOffset(SubRegIdx);
Locs.emplace_back(Location::Register, TRI->getSpillSize(*RC),
DwarfRegNum, Offset);
return ++MOI;
}
if (MOI->isRegLiveOut())
LiveOuts = parseRegisterLiveOutMask(MOI->getRegLiveOut());
return ++MOI;
}
void StackMaps::print(raw_ostream &OS) {
const TargetRegisterInfo *TRI =
AP.MF ? AP.MF->getSubtarget().getRegisterInfo() : nullptr;
OS << WSMP << "callsites:\n";
for (const auto &CSI : CSInfos) {
const LocationVec &CSLocs = CSI.Locations;
const LiveOutVec &LiveOuts = CSI.LiveOuts;
OS << WSMP << "callsite " << CSI.ID << "\n";
OS << WSMP << " has " << CSLocs.size() << " locations\n";
unsigned Idx = 0;
for (const auto &Loc : CSLocs) {
OS << WSMP << "\t\tLoc " << Idx << ": ";
switch (Loc.Type) {
case Location::Unprocessed:
OS << "<Unprocessed operand>";
break;
case Location::Register:
OS << "Register ";
if (TRI)
OS << printReg(Loc.Reg, TRI);
else
OS << Loc.Reg;
break;
case Location::Direct:
OS << "Direct ";
if (TRI)
OS << printReg(Loc.Reg, TRI);
else
OS << Loc.Reg;
if (Loc.Offset)
OS << " + " << Loc.Offset;
break;
case Location::Indirect:
OS << "Indirect ";
if (TRI)
OS << printReg(Loc.Reg, TRI);
else
OS << Loc.Reg;
OS << "+" << Loc.Offset;
break;
case Location::Constant:
OS << "Constant " << Loc.Offset;
break;
case Location::ConstantIndex:
OS << "Constant Index " << Loc.Offset;
break;
}
OS << "\t[encoding: .byte " << Loc.Type << ", .byte 0"
<< ", .short " << Loc.Size << ", .short " << Loc.Reg << ", .short 0"
<< ", .int " << Loc.Offset << "]\n";
Idx++;
}
OS << WSMP << "\thas " << LiveOuts.size() << " live-out registers\n";
Idx = 0;
for (const auto &LO : LiveOuts) {
OS << WSMP << "\t\tLO " << Idx << ": ";
if (TRI)
OS << printReg(LO.Reg, TRI);
else
OS << LO.Reg;
OS << "\t[encoding: .short " << LO.DwarfRegNum << ", .byte 0, .byte "
<< LO.Size << "]\n";
Idx++;
}
}
}
/// Create a live-out register record for the given register Reg.
StackMaps::LiveOutReg
StackMaps::createLiveOutReg(unsigned Reg, const TargetRegisterInfo *TRI) const {
unsigned DwarfRegNum = getDwarfRegNum(Reg, TRI);
unsigned Size = TRI->getSpillSize(*TRI->getMinimalPhysRegClass(Reg));
return LiveOutReg(Reg, DwarfRegNum, Size);
}
/// Parse the register live-out mask and return a vector of live-out registers
/// that need to be recorded in the stackmap.
StackMaps::LiveOutVec
StackMaps::parseRegisterLiveOutMask(const uint32_t *Mask) const {
assert(Mask && "No register mask specified");
const TargetRegisterInfo *TRI = AP.MF->getSubtarget().getRegisterInfo();
LiveOutVec LiveOuts;
// Create a LiveOutReg for each bit that is set in the register mask.
for (unsigned Reg = 0, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg)
if ((Mask[Reg / 32] >> Reg % 32) & 1)
LiveOuts.push_back(createLiveOutReg(Reg, TRI));
// We don't need to keep track of a register if its super-register is already
// in the list. Merge entries that refer to the same dwarf register and use
// the maximum size that needs to be spilled.
std::sort(LiveOuts.begin(), LiveOuts.end(),
[](const LiveOutReg &LHS, const LiveOutReg &RHS) {
// Only sort by the dwarf register number.
return LHS.DwarfRegNum < RHS.DwarfRegNum;
});
for (auto I = LiveOuts.begin(), E = LiveOuts.end(); I != E; ++I) {
for (auto II = std::next(I); II != E; ++II) {
if (I->DwarfRegNum != II->DwarfRegNum) {
// Skip all the now invalid entries.
I = --II;
break;
}
I->Size = std::max(I->Size, II->Size);
if (TRI->isSuperRegister(I->Reg, II->Reg))
I->Reg = II->Reg;
II->Reg = 0; // mark for deletion.
}
}
LiveOuts.erase(
llvm::remove_if(LiveOuts,
[](const LiveOutReg &LO) { return LO.Reg == 0; }),
LiveOuts.end());
return LiveOuts;
}
void StackMaps::recordStackMapOpers(const MachineInstr &MI, uint64_t ID,
MachineInstr::const_mop_iterator MOI,
MachineInstr::const_mop_iterator MOE,
bool recordResult) {
MCContext &OutContext = AP.OutStreamer->getContext();
MCSymbol *MILabel = OutContext.createTempSymbol();
AP.OutStreamer->EmitLabel(MILabel);
LocationVec Locations;
LiveOutVec LiveOuts;
if (recordResult) {
assert(PatchPointOpers(&MI).hasDef() && "Stackmap has no return value.");
parseOperand(MI.operands_begin(), std::next(MI.operands_begin()), Locations,
LiveOuts);
}
// Parse operands.
while (MOI != MOE) {
MOI = parseOperand(MOI, MOE, Locations, LiveOuts);
}
// Move large constants into the constant pool.
for (auto &Loc : Locations) {
// Constants are encoded as sign-extended integers.
// -1 is directly encoded as .long 0xFFFFFFFF with no constant pool.
if (Loc.Type == Location::Constant && !isInt<32>(Loc.Offset)) {
Loc.Type = Location::ConstantIndex;
// ConstPool is intentionally a MapVector of 'uint64_t's (as
// opposed to 'int64_t's). We should never be in a situation
// where we have to insert either the tombstone or the empty
// keys into a map, and for a DenseMap<uint64_t, T> these are
// (uint64_t)0 and (uint64_t)-1. They can be and are
// represented using 32 bit integers.
assert((uint64_t)Loc.Offset != DenseMapInfo<uint64_t>::getEmptyKey() &&
(uint64_t)Loc.Offset !=
DenseMapInfo<uint64_t>::getTombstoneKey() &&
"empty and tombstone keys should fit in 32 bits!");
auto Result = ConstPool.insert(std::make_pair(Loc.Offset, Loc.Offset));
Loc.Offset = Result.first - ConstPool.begin();
}
}
// Create an expression to calculate the offset of the callsite from function
// entry.
const MCExpr *CSOffsetExpr = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(MILabel, OutContext),
MCSymbolRefExpr::create(AP.CurrentFnSymForSize, OutContext), OutContext);
CSInfos.emplace_back(CSOffsetExpr, ID, std::move(Locations),
std::move(LiveOuts));
// Record the stack size of the current function and update callsite count.
const MachineFrameInfo &MFI = AP.MF->getFrameInfo();
const TargetRegisterInfo *RegInfo = AP.MF->getSubtarget().getRegisterInfo();
bool HasDynamicFrameSize =
MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(*(AP.MF));
uint64_t FrameSize = HasDynamicFrameSize ? UINT64_MAX : MFI.getStackSize();
auto CurrentIt = FnInfos.find(AP.CurrentFnSym);
if (CurrentIt != FnInfos.end())
CurrentIt->second.RecordCount++;
else
FnInfos.insert(std::make_pair(AP.CurrentFnSym, FunctionInfo(FrameSize)));
}
void StackMaps::recordStackMap(const MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::STACKMAP && "expected stackmap");
StackMapOpers opers(&MI);
const int64_t ID = MI.getOperand(PatchPointOpers::IDPos).getImm();
recordStackMapOpers(MI, ID, std::next(MI.operands_begin(), opers.getVarIdx()),
MI.operands_end());
}
void StackMaps::recordPatchPoint(const MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::PATCHPOINT && "expected patchpoint");
PatchPointOpers opers(&MI);
const int64_t ID = opers.getID();
auto MOI = std::next(MI.operands_begin(), opers.getStackMapStartIdx());
recordStackMapOpers(MI, ID, MOI, MI.operands_end(),
opers.isAnyReg() && opers.hasDef());
#ifndef NDEBUG
// verify anyregcc
auto &Locations = CSInfos.back().Locations;
if (opers.isAnyReg()) {
unsigned NArgs = opers.getNumCallArgs();
for (unsigned i = 0, e = (opers.hasDef() ? NArgs + 1 : NArgs); i != e; ++i)
assert(Locations[i].Type == Location::Register &&
"anyreg arg must be in reg.");
}
#endif
}
void StackMaps::recordStatepoint(const MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::STATEPOINT && "expected statepoint");
StatepointOpers opers(&MI);
// Record all the deopt and gc operands (they're contiguous and run from the
// initial index to the end of the operand list)
const unsigned StartIdx = opers.getVarIdx();
recordStackMapOpers(MI, opers.getID(), MI.operands_begin() + StartIdx,
MI.operands_end(), false);
}
/// Emit the stackmap header.
///
/// Header {
/// uint8 : Stack Map Version (currently 2)
/// uint8 : Reserved (expected to be 0)
/// uint16 : Reserved (expected to be 0)
/// }
/// uint32 : NumFunctions
/// uint32 : NumConstants
/// uint32 : NumRecords
void StackMaps::emitStackmapHeader(MCStreamer &OS) {
// Header.
OS.EmitIntValue(StackMapVersion, 1); // Version.
OS.EmitIntValue(0, 1); // Reserved.
OS.EmitIntValue(0, 2); // Reserved.
// Num functions.
DEBUG(dbgs() << WSMP << "#functions = " << FnInfos.size() << '\n');
OS.EmitIntValue(FnInfos.size(), 4);
// Num constants.
DEBUG(dbgs() << WSMP << "#constants = " << ConstPool.size() << '\n');
OS.EmitIntValue(ConstPool.size(), 4);
// Num callsites.
DEBUG(dbgs() << WSMP << "#callsites = " << CSInfos.size() << '\n');
OS.EmitIntValue(CSInfos.size(), 4);
}
/// Emit the function frame record for each function.
///
/// StkSizeRecord[NumFunctions] {
/// uint64 : Function Address
/// uint64 : Stack Size
/// uint64 : Record Count
/// }
void StackMaps::emitFunctionFrameRecords(MCStreamer &OS) {
// Function Frame records.
DEBUG(dbgs() << WSMP << "functions:\n");
for (auto const &FR : FnInfos) {
DEBUG(dbgs() << WSMP << "function addr: " << FR.first
<< " frame size: " << FR.second.StackSize
<< " callsite count: " << FR.second.RecordCount << '\n');
OS.EmitSymbolValue(FR.first, 8);
OS.EmitIntValue(FR.second.StackSize, 8);
OS.EmitIntValue(FR.second.RecordCount, 8);
}
}
/// Emit the constant pool.
///
/// int64 : Constants[NumConstants]
void StackMaps::emitConstantPoolEntries(MCStreamer &OS) {
// Constant pool entries.
DEBUG(dbgs() << WSMP << "constants:\n");
for (const auto &ConstEntry : ConstPool) {
DEBUG(dbgs() << WSMP << ConstEntry.second << '\n');
OS.EmitIntValue(ConstEntry.second, 8);
}
}
/// Emit the callsite info for each callsite.
///
/// StkMapRecord[NumRecords] {
/// uint64 : PatchPoint ID
/// uint32 : Instruction Offset
/// uint16 : Reserved (record flags)
/// uint16 : NumLocations
/// Location[NumLocations] {
/// uint8 : Register | Direct | Indirect | Constant | ConstantIndex
/// uint8 : Size in Bytes
/// uint16 : Dwarf RegNum
/// int32 : Offset
/// }
/// uint16 : Padding
/// uint16 : NumLiveOuts
/// LiveOuts[NumLiveOuts] {
/// uint16 : Dwarf RegNum
/// uint8 : Reserved
/// uint8 : Size in Bytes
/// }
/// uint32 : Padding (only if required to align to 8 byte)
/// }
///
/// Location Encoding, Type, Value:
/// 0x1, Register, Reg (value in register)
/// 0x2, Direct, Reg + Offset (frame index)
/// 0x3, Indirect, [Reg + Offset] (spilled value)
/// 0x4, Constant, Offset (small constant)
/// 0x5, ConstIndex, Constants[Offset] (large constant)
void StackMaps::emitCallsiteEntries(MCStreamer &OS) {
DEBUG(print(dbgs()));
// Callsite entries.
for (const auto &CSI : CSInfos) {
const LocationVec &CSLocs = CSI.Locations;
const LiveOutVec &LiveOuts = CSI.LiveOuts;
// Verify stack map entry. It's better to communicate a problem to the
// runtime than crash in case of in-process compilation. Currently, we do
// simple overflow checks, but we may eventually communicate other
// compilation errors this way.
if (CSLocs.size() > UINT16_MAX || LiveOuts.size() > UINT16_MAX) {
OS.EmitIntValue(UINT64_MAX, 8); // Invalid ID.
OS.EmitValue(CSI.CSOffsetExpr, 4);
OS.EmitIntValue(0, 2); // Reserved.
OS.EmitIntValue(0, 2); // 0 locations.
OS.EmitIntValue(0, 2); // padding.
OS.EmitIntValue(0, 2); // 0 live-out registers.
OS.EmitIntValue(0, 4); // padding.
continue;
}
OS.EmitIntValue(CSI.ID, 8);
OS.EmitValue(CSI.CSOffsetExpr, 4);
// Reserved for flags.
OS.EmitIntValue(0, 2);
OS.EmitIntValue(CSLocs.size(), 2);
for (const auto &Loc : CSLocs) {
OS.EmitIntValue(Loc.Type, 1);
OS.EmitIntValue(0, 1); // Reserved
OS.EmitIntValue(Loc.Size, 2);
OS.EmitIntValue(Loc.Reg, 2);
OS.EmitIntValue(0, 2); // Reserved
OS.EmitIntValue(Loc.Offset, 4);
}
// Emit alignment to 8 byte.
OS.EmitValueToAlignment(8);
// Num live-out registers and padding to align to 4 byte.
OS.EmitIntValue(0, 2);
OS.EmitIntValue(LiveOuts.size(), 2);
for (const auto &LO : LiveOuts) {
OS.EmitIntValue(LO.DwarfRegNum, 2);
OS.EmitIntValue(0, 1);
OS.EmitIntValue(LO.Size, 1);
}
// Emit alignment to 8 byte.
OS.EmitValueToAlignment(8);
}
}
/// Serialize the stackmap data.
void StackMaps::serializeToStackMapSection() {
(void)WSMP;
// Bail out if there's no stack map data.
assert((!CSInfos.empty() || ConstPool.empty()) &&
"Expected empty constant pool too!");
assert((!CSInfos.empty() || FnInfos.empty()) &&
"Expected empty function record too!");
if (CSInfos.empty())
return;
MCContext &OutContext = AP.OutStreamer->getContext();
MCStreamer &OS = *AP.OutStreamer;
// Create the section.
MCSection *StackMapSection =
OutContext.getObjectFileInfo()->getStackMapSection();
OS.SwitchSection(StackMapSection);
// Emit a dummy symbol to force section inclusion.
OS.EmitLabel(OutContext.getOrCreateSymbol(Twine("__LLVM_StackMaps")));
// Serialize data.
DEBUG(dbgs() << "********** Stack Map Output **********\n");
emitStackmapHeader(OS);
emitFunctionFrameRecords(OS);
emitConstantPoolEntries(OS);
emitCallsiteEntries(OS);
OS.AddBlankLine();
// Clean up.
CSInfos.clear();
ConstPool.clear();
}