llvm-mirror/test/Transforms/LoopVectorize/induction.ll
Sanjay Patel 8030ed3639 Rename getMaximumUnrollFactor -> getMaxInterleaveFactor; also rename option names controlling this variable.
"Unroll" is not the appropriate name for this variable. Clang already uses 
the term "interleave" in pragmas and metadata for this.

Differential Revision: http://reviews.llvm.org/D5066

llvm-svn: 217528
2014-09-10 17:58:16 +00:00

172 lines
5.4 KiB
LLVM

; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
; Make sure that we can handle multiple integer induction variables.
; CHECK-LABEL: @multi_int_induction(
; CHECK: vector.body:
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK: %normalized.idx = sub i64 %index, 0
; CHECK: %[[VAR:.*]] = trunc i64 %normalized.idx to i32
; CHECK: %offset.idx = add i32 190, %[[VAR]]
define void @multi_int_induction(i32* %A, i32 %N) {
for.body.lr.ph:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ]
%count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ]
%arrayidx2 = getelementptr inbounds i32* %A, i64 %indvars.iv
store i32 %count.09, i32* %arrayidx2, align 4
%inc = add nsw i32 %count.09, 1
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp ne i32 %lftr.wideiv, %N
br i1 %exitcond, label %for.body, label %for.end
for.end:
ret void
}
; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=IND
; Make sure we remove unneeded vectorization of induction variables.
; In order for instcombine to cleanup the vectorized induction variables that we
; create in the loop vectorizer we need to perform some form of redundancy
; elimination to get rid of multiple uses.
; IND-LABEL: scalar_use
; IND: br label %vector.body
; IND: vector.body:
; Vectorized induction variable.
; IND-NOT: insertelement <2 x i64>
; IND-NOT: shufflevector <2 x i64>
; IND: br {{.*}}, label %vector.body
define void @scalar_use(float* %a, float %b, i64 %offset, i64 %offset2, i64 %n) {
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%ind.sum = add i64 %iv, %offset
%arr.idx = getelementptr inbounds float* %a, i64 %ind.sum
%l1 = load float* %arr.idx, align 4
%ind.sum2 = add i64 %iv, %offset2
%arr.idx2 = getelementptr inbounds float* %a, i64 %ind.sum2
%l2 = load float* %arr.idx2, align 4
%m = fmul fast float %b, %l2
%ad = fadd fast float %l1, %m
store float %ad, float* %arr.idx, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %n
br i1 %exitcond, label %loopexit, label %for.body
loopexit:
ret void
}
; Make sure that the loop exit count computation does not overflow for i8 and
; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the
; induction variable to a bigger type the exit count computation will overflow
; to 0.
; PR17532
; CHECK-LABEL: i8_loop
; CHECK: icmp eq i32 {{.*}}, 256
define i32 @i8_loop() nounwind readnone ssp uwtable {
br label %1
; <label>:1 ; preds = %1, %0
%a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
%b.0 = phi i8 [ 0, %0 ], [ %3, %1 ]
%2 = and i32 %a.0, 4
%3 = add i8 %b.0, -1
%4 = icmp eq i8 %3, 0
br i1 %4, label %5, label %1
; <label>:5 ; preds = %1
ret i32 %2
}
; CHECK-LABEL: i16_loop
; CHECK: icmp eq i32 {{.*}}, 65536
define i32 @i16_loop() nounwind readnone ssp uwtable {
br label %1
; <label>:1 ; preds = %1, %0
%a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
%b.0 = phi i16 [ 0, %0 ], [ %3, %1 ]
%2 = and i32 %a.0, 4
%3 = add i16 %b.0, -1
%4 = icmp eq i16 %3, 0
br i1 %4, label %5, label %1
; <label>:5 ; preds = %1
ret i32 %2
}
; This loop has a backedge taken count of i32_max. We need to check for this
; condition and branch directly to the scalar loop.
; CHECK-LABEL: max_i32_backedgetaken
; CHECK: %backedge.overflow = icmp eq i32 -1, -1
; CHECK: br i1 %backedge.overflow, label %scalar.ph, label %overflow.checked
; CHECK: scalar.ph:
; CHECK: %bc.resume.val = phi i32 [ %resume.val, %middle.block ], [ 0, %0 ]
; CHECK: %bc.merge.rdx = phi i32 [ 1, %0 ], [ %5, %middle.block ]
define i32 @max_i32_backedgetaken() nounwind readnone ssp uwtable {
br label %1
; <label>:1 ; preds = %1, %0
%a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
%b.0 = phi i32 [ 0, %0 ], [ %3, %1 ]
%2 = and i32 %a.0, 4
%3 = add i32 %b.0, -1
%4 = icmp eq i32 %3, 0
br i1 %4, label %5, label %1
; <label>:5 ; preds = %1
ret i32 %2
}
; When generating the overflow check we must sure that the induction start value
; is defined before the branch to the scalar preheader.
; CHECK-LABEL: testoverflowcheck
; CHECK: entry
; CHECK: %[[LOAD:.*]] = load i8
; CHECK: %[[VAL:.*]] = zext i8 %[[LOAD]] to i32
; CHECK: br
; CHECK: scalar.ph
; CHECK: phi i32 [ %{{.*}}, %middle.block ], [ %[[VAL]], %entry ]
@e = global i8 1, align 1
@d = common global i32 0, align 4
@c = common global i32 0, align 4
define i32 @testoverflowcheck() {
entry:
%.pr.i = load i8* @e, align 1
%0 = load i32* @d, align 4
%c.promoted.i = load i32* @c, align 4
br label %cond.end.i
cond.end.i:
%inc4.i = phi i8 [ %.pr.i, %entry ], [ %inc.i, %cond.end.i ]
%and3.i = phi i32 [ %c.promoted.i, %entry ], [ %and.i, %cond.end.i ]
%and.i = and i32 %0, %and3.i
%inc.i = add i8 %inc4.i, 1
%tobool.i = icmp eq i8 %inc.i, 0
br i1 %tobool.i, label %loopexit, label %cond.end.i
loopexit:
ret i32 %and.i
}