llvm-mirror/include/llvm/SymbolTable.h
Chris Lattner be717b6402 Expose typedefs
llvm-svn: 738
2001-10-13 06:17:50 +00:00

121 lines
3.7 KiB
C++

//===-- llvm/SymbolTable.h - Implement a type planned symtab ------*- C++ -*-=//
//
// This file implements a symbol table that has planed broken up by type.
// Identical types may have overlapping symbol names as long as they are
// distinct.
//
// Note that this implements a chained symbol table. If a name being 'lookup'd
// isn't found in the current symbol table, then the parent symbol table is
// searched.
//
// This chaining behavior does NOT affect iterators though: only the lookup
// method
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SYMBOL_TABLE_H
#define LLVM_SYMBOL_TABLE_H
#include "llvm/Value.h"
#include <map>
#ifndef NDEBUG // Only for assertions
#include "llvm/Type.h"
#include "llvm/ConstPoolVals.h"
#endif
class Value;
class Type;
// TODO: Change this back to vector<map<const string, Value *> >
// Make the vector be a data member, and base it on UniqueID's
// That should be much more efficient!
//
class SymbolTable : public AbstractTypeUser,
public map<const Type *, map<const string, Value *> > {
public:
typedef map<const string, Value *> VarMap;
typedef map<const Type *, VarMap> super;
private:
SymbolTable *ParentSymTab;
friend class SymTabValue;
inline void setParentSymTab(SymbolTable *P) { ParentSymTab = P; }
public:
typedef VarMap::iterator type_iterator;
typedef VarMap::const_iterator type_const_iterator;
inline SymbolTable(SymbolTable *P = 0) { ParentSymTab = P; }
~SymbolTable();
SymbolTable *getParentSymTab() { return ParentSymTab; }
// lookup - Returns null on failure...
Value *lookup(const Type *Ty, const string &name);
// find - returns end(Ty->getIDNumber()) on failure...
type_iterator type_find(const Type *Ty, const string &name);
type_iterator type_find(const Value *D);
// insert - Add named definition to the symbol table...
inline void insert(Value *N) {
assert(N->hasName() && "Value must be named to go into symbol table!");
insertEntry(N->getName(), N);
}
// insert - Insert a constant or type into the symbol table with the specified
// name... There can be a many to one mapping between names and
// (constant/type)s.
//
inline void insert(const string &Name, Value *V) {
assert((isa<Type>(V) || isa<ConstPoolVal>(V)) &&
"Can only insert types and constants here!");
insertEntry(Name, V);
}
void remove(Value *N);
Value *type_remove(const type_iterator &It);
// getUniqueName - Given a base name, return a string that is either equal to
// it (or derived from it) that does not already occur in the symbol table for
// the specified type.
//
string getUniqueName(const Type *Ty, const string &BaseName);
inline unsigned type_size(const Type *TypeID) const {
return find(TypeID)->second.size();
}
// Note that type_begin / type_end only work if you know that an element of
// TypeID is already in the symbol table!!!
//
inline type_iterator type_begin(const Type *TypeID) {
return find(TypeID)->second.begin();
}
inline type_const_iterator type_begin(const Type *TypeID) const {
return find(TypeID)->second.begin();
}
inline type_iterator type_end(const Type *TypeID) {
return find(TypeID)->second.end();
}
inline type_const_iterator type_end(const Type *TypeID) const {
return find(TypeID)->second.end();
}
void dump() const; // Debug method, print out symbol table
private:
// insertEntry - Insert a value into the symbol table with the specified
// name...
//
void insertEntry(const string &Name, Value *V);
// This function is called when one of the types in the type plane are refined
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
};
#endif