llvm-mirror/tools/bugpoint/BugDriver.cpp
2003-10-15 20:42:48 +00:00

175 lines
6.2 KiB
C++

//===- BugDriver.cpp - Top-Level BugPoint class implementation ------------===//
//
// This class contains all of the shared state and information that is used by
// the BugPoint tool to track down errors in optimizations. This class is the
// main driver class that invokes all sub-functionality.
//
//===----------------------------------------------------------------------===//
#include "BugDriver.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/Bytecode/Reader.h"
#include "llvm/Transforms/Utils/Linker.h"
#include "Support/CommandLine.h"
#include "Support/FileUtilities.h"
#include <memory>
// Anonymous namespace to define command line options for debugging.
//
namespace {
// Output - The user can specify a file containing the expected output of the
// program. If this filename is set, it is used as the reference diff source,
// otherwise the raw input run through an interpreter is used as the reference
// source.
//
cl::opt<std::string>
OutputFile("output", cl::desc("Specify a reference program output "
"(for miscompilation detection)"));
}
/// getPassesString - Turn a list of passes into a string which indicates the
/// command line options that must be passed to add the passes.
///
std::string getPassesString(const std::vector<const PassInfo*> &Passes) {
std::string Result;
for (unsigned i = 0, e = Passes.size(); i != e; ++i) {
if (i) Result += " ";
Result += "-";
Result += Passes[i]->getPassArgument();
}
return Result;
}
// DeleteFunctionBody - "Remove" the function by deleting all of its basic
// blocks, making it external.
//
void DeleteFunctionBody(Function *F) {
// delete the body of the function...
F->deleteBody();
assert(F->isExternal() && "This didn't make the function external!");
}
BugDriver::BugDriver(const char *toolname)
: ToolName(toolname), ReferenceOutputFile(OutputFile),
Program(0), Interpreter(0), cbe(0), gcc(0) {}
/// ParseInputFile - Given a bytecode or assembly input filename, parse and
/// return it, or return null if not possible.
///
Module *BugDriver::ParseInputFile(const std::string &InputFilename) const {
Module *Result = 0;
try {
Result = ParseBytecodeFile(InputFilename);
if (!Result && !(Result = ParseAssemblyFile(InputFilename))){
std::cerr << ToolName << ": could not read input file '"
<< InputFilename << "'!\n";
}
} catch (const ParseException &E) {
std::cerr << ToolName << ": " << E.getMessage() << "\n";
Result = 0;
}
return Result;
}
// This method takes the specified list of LLVM input files, attempts to load
// them, either as assembly or bytecode, then link them together. It returns
// true on failure (if, for example, an input bytecode file could not be
// parsed), and false on success.
//
bool BugDriver::addSources(const std::vector<std::string> &Filenames) {
assert(Program == 0 && "Cannot call addSources multiple times!");
assert(!Filenames.empty() && "Must specify at least on input filename!");
// Load the first input file...
Program = ParseInputFile(Filenames[0]);
if (Program == 0) return true;
std::cout << "Read input file : '" << Filenames[0] << "'\n";
for (unsigned i = 1, e = Filenames.size(); i != e; ++i) {
std::auto_ptr<Module> M(ParseInputFile(Filenames[i]));
if (M.get() == 0) return true;
std::cout << "Linking in input file: '" << Filenames[i] << "'\n";
std::string ErrorMessage;
if (LinkModules(Program, M.get(), &ErrorMessage)) {
std::cerr << ToolName << ": error linking in '" << Filenames[i] << "': "
<< ErrorMessage << "\n";
return true;
}
}
std::cout << "*** All input ok\n";
// All input files read successfully!
return false;
}
/// run - The top level method that is invoked after all of the instance
/// variables are set up from command line arguments.
///
bool BugDriver::run() {
// The first thing that we must do is determine what the problem is. Does the
// optimization series crash the compiler, or does it produce illegal code? We
// make the top-level decision by trying to run all of the passes on the the
// input program, which should generate a bytecode file. If it does generate
// a bytecode file, then we know the compiler didn't crash, so try to diagnose
// a miscompilation.
//
if (!PassesToRun.empty()) {
std::cout << "Running selected passes on program to test for crash: ";
if (runPasses(PassesToRun))
return debugCrash();
}
// Set up the execution environment, selecting a method to run LLVM bytecode.
if (initializeExecutionEnvironment()) return true;
// Run the raw input to see where we are coming from. If a reference output
// was specified, make sure that the raw output matches it. If not, it's a
// problem in the front-end or the code generator.
//
bool CreatedOutput = false;
if (ReferenceOutputFile.empty()) {
std::cout << "Generating reference output from raw program...";
ReferenceOutputFile = executeProgramWithCBE("bugpoint.reference.out");
CreatedOutput = true;
std::cout << "Reference output is: " << ReferenceOutputFile << "\n";
}
// Make sure the reference output file gets deleted on exit from this
// function, if appropriate.
struct Remover {
bool DeleteIt; const std::string &Filename;
Remover(bool deleteIt, const std::string &filename)
: DeleteIt(deleteIt), Filename(filename) {}
~Remover() {
if (DeleteIt) removeFile(Filename);
}
} RemoverInstance(CreatedOutput, ReferenceOutputFile);
// Diff the output of the raw program against the reference output. If it
// matches, then we have a miscompilation bug.
std::cout << "*** Checking the code generator...\n";
if (!diffProgram()) {
std::cout << "\n*** Debugging miscompilation!\n";
return debugMiscompilation();
}
std::cout << "\n*** Input program does not match reference diff!\n";
std::cout << "Debugging code generator problem!\n";
return debugCodeGenerator();
}
void BugDriver::PrintFunctionList(const std::vector<Function*> &Funcs) {
for (unsigned i = 0, e = Funcs.size(); i != e; ++i) {
if (i) std::cout << ", ";
std::cout << Funcs[i]->getName();
}
std::cout << std::flush;
}