llvm-mirror/lib/Target/X86/X86InstrCMovSetCC.td
Chris Lattner ef2e024af8 Move cmov pseudo instructions to InstrCompiler,
convert all the rest of the cmovs to the multiclass,
with good results:

 X86InstrCMovSetCC.td |  598 +--------------------------------------------------
 X86InstrCompiler.td  |   61 +++++
 2 files changed, 77 insertions(+), 582 deletions(-)

llvm-svn: 115707
2010-10-05 23:09:10 +00:00

105 lines
4.9 KiB
TableGen

//===- X86InstrCMovSetCC.td - Conditional Move and SetCC ---*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 conditional move and set on condition
// instructions.
//
//===----------------------------------------------------------------------===//
// SetCC instructions.
multiclass CMOV<bits<8> opc, string Mnemonic, PatLeaf CondNode> {
let Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst",
isCommutable = 1 in {
def #NAME#16rr
: I<opc, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
!strconcat(Mnemonic, "{w}\t{$src2, $dst|$dst, $src2}"),
[(set GR16:$dst,
(X86cmov GR16:$src1, GR16:$src2, CondNode, EFLAGS))]>,TB,OpSize;
def #NAME#32rr
: I<opc, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
!strconcat(Mnemonic, "{l}\t{$src2, $dst|$dst, $src2}"),
[(set GR32:$dst,
(X86cmov GR32:$src1, GR32:$src2, CondNode, EFLAGS))]>, TB;
def #NAME#64rr
:RI<opc, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
!strconcat(Mnemonic, "{q}\t{$src2, $dst|$dst, $src2}"),
[(set GR64:$dst,
(X86cmov GR64:$src1, GR64:$src2, CondNode, EFLAGS))]>, TB;
}
let Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst" in {
def #NAME#16rm
: I<opc, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
!strconcat(Mnemonic, "{w}\t{$src2, $dst|$dst, $src2}"),
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
CondNode, EFLAGS))]>, TB, OpSize;
def #NAME#32rm
: I<opc, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
!strconcat(Mnemonic, "{l}\t{$src2, $dst|$dst, $src2}"),
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
CondNode, EFLAGS))]>, TB;
def #NAME#64rm
:RI<opc, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
!strconcat(Mnemonic, "{q}\t{$src2, $dst|$dst, $src2}"),
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
CondNode, EFLAGS))]>, TB;
} // Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst"
} // end multiclass
// Conditional Moves.
defm CMOVO : CMOV<0x40, "cmovo" , X86_COND_O>;
defm CMOVNO : CMOV<0x41, "cmovno", X86_COND_NO>;
defm CMOVB : CMOV<0x42, "cmovb" , X86_COND_B>;
defm CMOVAE : CMOV<0x43, "cmovae", X86_COND_AE>;
defm CMOVE : CMOV<0x44, "cmove" , X86_COND_E>;
defm CMOVNE : CMOV<0x45, "cmovne", X86_COND_NE>;
defm CMOVBE : CMOV<0x46, "cmovbe", X86_COND_BE>;
defm CMOVA : CMOV<0x47, "cmova" , X86_COND_A>;
defm CMOVS : CMOV<0x48, "cmovs" , X86_COND_S>;
defm CMOVNS : CMOV<0x49, "cmovns", X86_COND_NS>;
defm CMOVP : CMOV<0x4A, "cmovp" , X86_COND_P>;
defm CMOVNP : CMOV<0x4B, "cmovnp", X86_COND_NP>;
defm CMOVL : CMOV<0x4C, "cmovl" , X86_COND_L>;
defm CMOVGE : CMOV<0x4D, "cmovge", X86_COND_GE>;
defm CMOVLE : CMOV<0x4E, "cmovle", X86_COND_LE>;
defm CMOVG : CMOV<0x4F, "cmovg" , X86_COND_G>;
// SetCC instructions.
multiclass SETCC<bits<8> opc, string Mnemonic, PatLeaf OpNode> {
let Uses = [EFLAGS] in {
def r : I<opc, MRM0r, (outs GR8:$dst), (ins),
!strconcat(Mnemonic, "\t$dst"),
[(set GR8:$dst, (X86setcc OpNode, EFLAGS))]>, TB;
def m : I<opc, MRM0m, (outs), (ins i8mem:$dst),
!strconcat(Mnemonic, "\t$dst"),
[(store (X86setcc OpNode, EFLAGS), addr:$dst)]>, TB;
} // Uses = [EFLAGS]
}
defm SETO : SETCC<0x90, "seto", X86_COND_O>; // is overflow bit set
defm SETNO : SETCC<0x91, "setno", X86_COND_NO>; // is overflow bit not set
defm SETB : SETCC<0x92, "setb", X86_COND_B>; // unsigned less than
defm SETAE : SETCC<0x93, "setae", X86_COND_AE>; // unsigned greater or equal
defm SETE : SETCC<0x94, "sete", X86_COND_E>; // equal to
defm SETNE : SETCC<0x95, "setne", X86_COND_NE>; // not equal to
defm SETBE : SETCC<0x96, "setbe", X86_COND_BE>; // unsigned less than or equal
defm SETA : SETCC<0x97, "seta", X86_COND_A>; // unsigned greater than
defm SETS : SETCC<0x98, "sets", X86_COND_S>; // is signed bit set
defm SETNS : SETCC<0x99, "setns", X86_COND_NS>; // is not signed
defm SETP : SETCC<0x9A, "setp", X86_COND_P>; // is parity bit set
defm SETNP : SETCC<0x9B, "setnp", X86_COND_NP>; // is parity bit not set
defm SETL : SETCC<0x9C, "setl", X86_COND_L>; // signed less than
defm SETGE : SETCC<0x9D, "setge", X86_COND_GE>; // signed greater or equal
defm SETLE : SETCC<0x9E, "setle", X86_COND_LE>; // signed less than or equal
defm SETG : SETCC<0x9F, "setg", X86_COND_G>; // signed greater than