mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-04-06 01:31:56 +00:00

This commit modifies the way the machine basic blocks are serialized - now the machine basic blocks are serialized using a custom syntax instead of relying on YAML primitives. Instead of using YAML mappings to represent the individual machine basic blocks in a machine function's body, the new syntax uses a single YAML block scalar which contains all of the machine basic blocks and instructions for that function. This is an example of a function's body that uses the old syntax: body: - id: 0 name: entry instructions: - '%eax = MOV32r0 implicit-def %eflags' - 'RETQ %eax' ... The same body is now written like this: body: | bb.0.entry: %eax = MOV32r0 implicit-def %eflags RETQ %eax ... This syntax change is motivated by the fact that the bundled machine instructions didn't map that well to the old syntax which was using a single YAML sequence to store all of the machine instructions in a block. The bundled machine instructions internally use flags like BundledPred and BundledSucc to determine the bundles, and serializing them as MI flags using the old syntax would have had a negative impact on the readability and the ease of editing for MIR files. The new syntax allows me to serialize the bundled machine instructions using a block construct without relying on the internal flags, for example: BUNDLE implicit-def dead %itstate, implicit-def %s1 ... { t2IT 1, 24, implicit-def %itstate %s1 = VMOVS killed %s0, 1, killed %cpsr, implicit killed %itstate } This commit also converts the MIR testcases to the new syntax. I developed a script that can convert from the old syntax to the new one. I will post the script on the llvm-commits mailing list in the thread for this commit. llvm-svn: 244982
793 lines
32 KiB
C++
793 lines
32 KiB
C++
//===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Collect the sequence of machine instructions for a basic block.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
|
|
#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
|
|
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include <functional>
|
|
|
|
namespace llvm {
|
|
|
|
class Pass;
|
|
class BasicBlock;
|
|
class MachineFunction;
|
|
class MCSymbol;
|
|
class MIPrinter;
|
|
class SlotIndexes;
|
|
class StringRef;
|
|
class raw_ostream;
|
|
class MachineBranchProbabilityInfo;
|
|
|
|
template <>
|
|
struct ilist_traits<MachineInstr> : public ilist_default_traits<MachineInstr> {
|
|
private:
|
|
mutable ilist_half_node<MachineInstr> Sentinel;
|
|
|
|
// this is only set by the MachineBasicBlock owning the LiveList
|
|
friend class MachineBasicBlock;
|
|
MachineBasicBlock* Parent;
|
|
|
|
public:
|
|
MachineInstr *createSentinel() const {
|
|
return static_cast<MachineInstr*>(&Sentinel);
|
|
}
|
|
void destroySentinel(MachineInstr *) const {}
|
|
|
|
MachineInstr *provideInitialHead() const { return createSentinel(); }
|
|
MachineInstr *ensureHead(MachineInstr*) const { return createSentinel(); }
|
|
static void noteHead(MachineInstr*, MachineInstr*) {}
|
|
|
|
void addNodeToList(MachineInstr* N);
|
|
void removeNodeFromList(MachineInstr* N);
|
|
void transferNodesFromList(ilist_traits &SrcTraits,
|
|
ilist_iterator<MachineInstr> first,
|
|
ilist_iterator<MachineInstr> last);
|
|
void deleteNode(MachineInstr *N);
|
|
private:
|
|
void createNode(const MachineInstr &);
|
|
};
|
|
|
|
class MachineBasicBlock : public ilist_node<MachineBasicBlock> {
|
|
typedef ilist<MachineInstr> Instructions;
|
|
Instructions Insts;
|
|
const BasicBlock *BB;
|
|
int Number;
|
|
MachineFunction *xParent;
|
|
|
|
/// Keep track of the predecessor / successor basic blocks.
|
|
std::vector<MachineBasicBlock *> Predecessors;
|
|
std::vector<MachineBasicBlock *> Successors;
|
|
|
|
/// Keep track of the weights to the successors. This vector has the same
|
|
/// order as Successors, or it is empty if we don't use it (disable
|
|
/// optimization).
|
|
std::vector<uint32_t> Weights;
|
|
typedef std::vector<uint32_t>::iterator weight_iterator;
|
|
typedef std::vector<uint32_t>::const_iterator const_weight_iterator;
|
|
|
|
/// Keep track of the physical registers that are livein of the basicblock.
|
|
std::vector<unsigned> LiveIns;
|
|
|
|
/// Alignment of the basic block. Zero if the basic block does not need to be
|
|
/// aligned. The alignment is specified as log2(bytes).
|
|
unsigned Alignment;
|
|
|
|
/// Indicate that this basic block is entered via an exception handler.
|
|
bool IsLandingPad;
|
|
|
|
/// Indicate that this basic block is potentially the target of an indirect
|
|
/// branch.
|
|
bool AddressTaken;
|
|
|
|
/// \brief since getSymbol is a relatively heavy-weight operation, the symbol
|
|
/// is only computed once and is cached.
|
|
mutable MCSymbol *CachedMCSymbol;
|
|
|
|
// Intrusive list support
|
|
MachineBasicBlock() {}
|
|
|
|
explicit MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb);
|
|
|
|
~MachineBasicBlock();
|
|
|
|
// MachineBasicBlocks are allocated and owned by MachineFunction.
|
|
friend class MachineFunction;
|
|
|
|
public:
|
|
/// Return the LLVM basic block that this instance corresponded to originally.
|
|
/// Note that this may be NULL if this instance does not correspond directly
|
|
/// to an LLVM basic block.
|
|
const BasicBlock *getBasicBlock() const { return BB; }
|
|
|
|
/// Return the name of the corresponding LLVM basic block, or "(null)".
|
|
StringRef getName() const;
|
|
|
|
/// Return a formatted string to identify this block and its parent function.
|
|
std::string getFullName() const;
|
|
|
|
/// Test whether this block is potentially the target of an indirect branch.
|
|
bool hasAddressTaken() const { return AddressTaken; }
|
|
|
|
/// Set this block to reflect that it potentially is the target of an indirect
|
|
/// branch.
|
|
void setHasAddressTaken() { AddressTaken = true; }
|
|
|
|
/// Return the MachineFunction containing this basic block.
|
|
const MachineFunction *getParent() const { return xParent; }
|
|
MachineFunction *getParent() { return xParent; }
|
|
|
|
/// MachineBasicBlock iterator that automatically skips over MIs that are
|
|
/// inside bundles (i.e. walk top level MIs only).
|
|
template<typename Ty, typename IterTy>
|
|
class bundle_iterator
|
|
: public std::iterator<std::bidirectional_iterator_tag, Ty, ptrdiff_t> {
|
|
IterTy MII;
|
|
|
|
public:
|
|
bundle_iterator(IterTy mii) : MII(mii) {}
|
|
|
|
bundle_iterator(Ty &mi) : MII(mi) {
|
|
assert(!mi.isBundledWithPred() &&
|
|
"It's not legal to initialize bundle_iterator with a bundled MI");
|
|
}
|
|
bundle_iterator(Ty *mi) : MII(mi) {
|
|
assert((!mi || !mi->isBundledWithPred()) &&
|
|
"It's not legal to initialize bundle_iterator with a bundled MI");
|
|
}
|
|
// Template allows conversion from const to nonconst.
|
|
template<class OtherTy, class OtherIterTy>
|
|
bundle_iterator(const bundle_iterator<OtherTy, OtherIterTy> &I)
|
|
: MII(I.getInstrIterator()) {}
|
|
bundle_iterator() : MII(nullptr) {}
|
|
|
|
Ty &operator*() const { return *MII; }
|
|
Ty *operator->() const { return &operator*(); }
|
|
|
|
operator Ty*() const { return MII; }
|
|
|
|
bool operator==(const bundle_iterator &x) const {
|
|
return MII == x.MII;
|
|
}
|
|
bool operator!=(const bundle_iterator &x) const {
|
|
return !operator==(x);
|
|
}
|
|
|
|
// Increment and decrement operators...
|
|
bundle_iterator &operator--() { // predecrement - Back up
|
|
do --MII;
|
|
while (MII->isBundledWithPred());
|
|
return *this;
|
|
}
|
|
bundle_iterator &operator++() { // preincrement - Advance
|
|
while (MII->isBundledWithSucc())
|
|
++MII;
|
|
++MII;
|
|
return *this;
|
|
}
|
|
bundle_iterator operator--(int) { // postdecrement operators...
|
|
bundle_iterator tmp = *this;
|
|
--*this;
|
|
return tmp;
|
|
}
|
|
bundle_iterator operator++(int) { // postincrement operators...
|
|
bundle_iterator tmp = *this;
|
|
++*this;
|
|
return tmp;
|
|
}
|
|
|
|
IterTy getInstrIterator() const {
|
|
return MII;
|
|
}
|
|
};
|
|
|
|
typedef Instructions::iterator instr_iterator;
|
|
typedef Instructions::const_iterator const_instr_iterator;
|
|
typedef std::reverse_iterator<instr_iterator> reverse_instr_iterator;
|
|
typedef
|
|
std::reverse_iterator<const_instr_iterator> const_reverse_instr_iterator;
|
|
|
|
typedef
|
|
bundle_iterator<MachineInstr,instr_iterator> iterator;
|
|
typedef
|
|
bundle_iterator<const MachineInstr,const_instr_iterator> const_iterator;
|
|
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
|
|
typedef std::reverse_iterator<iterator> reverse_iterator;
|
|
|
|
|
|
unsigned size() const { return (unsigned)Insts.size(); }
|
|
bool empty() const { return Insts.empty(); }
|
|
|
|
MachineInstr &instr_front() { return Insts.front(); }
|
|
MachineInstr &instr_back() { return Insts.back(); }
|
|
const MachineInstr &instr_front() const { return Insts.front(); }
|
|
const MachineInstr &instr_back() const { return Insts.back(); }
|
|
|
|
MachineInstr &front() { return Insts.front(); }
|
|
MachineInstr &back() { return *--end(); }
|
|
const MachineInstr &front() const { return Insts.front(); }
|
|
const MachineInstr &back() const { return *--end(); }
|
|
|
|
instr_iterator instr_begin() { return Insts.begin(); }
|
|
const_instr_iterator instr_begin() const { return Insts.begin(); }
|
|
instr_iterator instr_end() { return Insts.end(); }
|
|
const_instr_iterator instr_end() const { return Insts.end(); }
|
|
reverse_instr_iterator instr_rbegin() { return Insts.rbegin(); }
|
|
const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
|
|
reverse_instr_iterator instr_rend () { return Insts.rend(); }
|
|
const_reverse_instr_iterator instr_rend () const { return Insts.rend(); }
|
|
|
|
iterator begin() { return instr_begin(); }
|
|
const_iterator begin() const { return instr_begin(); }
|
|
iterator end () { return instr_end(); }
|
|
const_iterator end () const { return instr_end(); }
|
|
reverse_iterator rbegin() { return instr_rbegin(); }
|
|
const_reverse_iterator rbegin() const { return instr_rbegin(); }
|
|
reverse_iterator rend () { return instr_rend(); }
|
|
const_reverse_iterator rend () const { return instr_rend(); }
|
|
|
|
inline iterator_range<iterator> terminators() {
|
|
return iterator_range<iterator>(getFirstTerminator(), end());
|
|
}
|
|
inline iterator_range<const_iterator> terminators() const {
|
|
return iterator_range<const_iterator>(getFirstTerminator(), end());
|
|
}
|
|
|
|
// Machine-CFG iterators
|
|
typedef std::vector<MachineBasicBlock *>::iterator pred_iterator;
|
|
typedef std::vector<MachineBasicBlock *>::const_iterator const_pred_iterator;
|
|
typedef std::vector<MachineBasicBlock *>::iterator succ_iterator;
|
|
typedef std::vector<MachineBasicBlock *>::const_iterator const_succ_iterator;
|
|
typedef std::vector<MachineBasicBlock *>::reverse_iterator
|
|
pred_reverse_iterator;
|
|
typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
|
|
const_pred_reverse_iterator;
|
|
typedef std::vector<MachineBasicBlock *>::reverse_iterator
|
|
succ_reverse_iterator;
|
|
typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
|
|
const_succ_reverse_iterator;
|
|
pred_iterator pred_begin() { return Predecessors.begin(); }
|
|
const_pred_iterator pred_begin() const { return Predecessors.begin(); }
|
|
pred_iterator pred_end() { return Predecessors.end(); }
|
|
const_pred_iterator pred_end() const { return Predecessors.end(); }
|
|
pred_reverse_iterator pred_rbegin()
|
|
{ return Predecessors.rbegin();}
|
|
const_pred_reverse_iterator pred_rbegin() const
|
|
{ return Predecessors.rbegin();}
|
|
pred_reverse_iterator pred_rend()
|
|
{ return Predecessors.rend(); }
|
|
const_pred_reverse_iterator pred_rend() const
|
|
{ return Predecessors.rend(); }
|
|
unsigned pred_size() const {
|
|
return (unsigned)Predecessors.size();
|
|
}
|
|
bool pred_empty() const { return Predecessors.empty(); }
|
|
succ_iterator succ_begin() { return Successors.begin(); }
|
|
const_succ_iterator succ_begin() const { return Successors.begin(); }
|
|
succ_iterator succ_end() { return Successors.end(); }
|
|
const_succ_iterator succ_end() const { return Successors.end(); }
|
|
succ_reverse_iterator succ_rbegin()
|
|
{ return Successors.rbegin(); }
|
|
const_succ_reverse_iterator succ_rbegin() const
|
|
{ return Successors.rbegin(); }
|
|
succ_reverse_iterator succ_rend()
|
|
{ return Successors.rend(); }
|
|
const_succ_reverse_iterator succ_rend() const
|
|
{ return Successors.rend(); }
|
|
unsigned succ_size() const {
|
|
return (unsigned)Successors.size();
|
|
}
|
|
bool succ_empty() const { return Successors.empty(); }
|
|
|
|
inline iterator_range<pred_iterator> predecessors() {
|
|
return iterator_range<pred_iterator>(pred_begin(), pred_end());
|
|
}
|
|
inline iterator_range<const_pred_iterator> predecessors() const {
|
|
return iterator_range<const_pred_iterator>(pred_begin(), pred_end());
|
|
}
|
|
inline iterator_range<succ_iterator> successors() {
|
|
return iterator_range<succ_iterator>(succ_begin(), succ_end());
|
|
}
|
|
inline iterator_range<const_succ_iterator> successors() const {
|
|
return iterator_range<const_succ_iterator>(succ_begin(), succ_end());
|
|
}
|
|
|
|
// LiveIn management methods.
|
|
|
|
/// Adds the specified register as a live in. Note that it is an error to add
|
|
/// the same register to the same set more than once unless the intention is
|
|
/// to call sortUniqueLiveIns after all registers are added.
|
|
void addLiveIn(unsigned Reg) { LiveIns.push_back(Reg); }
|
|
|
|
/// Sorts and uniques the LiveIns vector. It can be significantly faster to do
|
|
/// this than repeatedly calling isLiveIn before calling addLiveIn for every
|
|
/// LiveIn insertion.
|
|
void sortUniqueLiveIns() {
|
|
std::sort(LiveIns.begin(), LiveIns.end());
|
|
LiveIns.erase(std::unique(LiveIns.begin(), LiveIns.end()), LiveIns.end());
|
|
}
|
|
|
|
/// Add PhysReg as live in to this block, and ensure that there is a copy of
|
|
/// PhysReg to a virtual register of class RC. Return the virtual register
|
|
/// that is a copy of the live in PhysReg.
|
|
unsigned addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC);
|
|
|
|
/// Remove the specified register from the live in set.
|
|
void removeLiveIn(unsigned Reg);
|
|
|
|
/// Return true if the specified register is in the live in set.
|
|
bool isLiveIn(unsigned Reg) const;
|
|
|
|
// Iteration support for live in sets. These sets are kept in sorted
|
|
// order by their register number.
|
|
typedef std::vector<unsigned>::const_iterator livein_iterator;
|
|
livein_iterator livein_begin() const { return LiveIns.begin(); }
|
|
livein_iterator livein_end() const { return LiveIns.end(); }
|
|
bool livein_empty() const { return LiveIns.empty(); }
|
|
|
|
/// Return alignment of the basic block. The alignment is specified as
|
|
/// log2(bytes).
|
|
unsigned getAlignment() const { return Alignment; }
|
|
|
|
/// Set alignment of the basic block. The alignment is specified as
|
|
/// log2(bytes).
|
|
void setAlignment(unsigned Align) { Alignment = Align; }
|
|
|
|
/// Returns true if the block is a landing pad. That is this basic block is
|
|
/// entered via an exception handler.
|
|
bool isLandingPad() const { return IsLandingPad; }
|
|
|
|
/// Indicates the block is a landing pad. That is this basic block is entered
|
|
/// via an exception handler.
|
|
void setIsLandingPad(bool V = true) { IsLandingPad = V; }
|
|
|
|
/// If this block has a successor that is a landing pad, return it. Otherwise
|
|
/// return NULL.
|
|
const MachineBasicBlock *getLandingPadSuccessor() const;
|
|
|
|
// Code Layout methods.
|
|
|
|
/// Move 'this' block before or after the specified block. This only moves
|
|
/// the block, it does not modify the CFG or adjust potential fall-throughs at
|
|
/// the end of the block.
|
|
void moveBefore(MachineBasicBlock *NewAfter);
|
|
void moveAfter(MachineBasicBlock *NewBefore);
|
|
|
|
/// Update the terminator instructions in block to account for changes to the
|
|
/// layout. If the block previously used a fallthrough, it may now need a
|
|
/// branch, and if it previously used branching it may now be able to use a
|
|
/// fallthrough.
|
|
void updateTerminator();
|
|
|
|
// Machine-CFG mutators
|
|
|
|
/// Add succ as a successor of this MachineBasicBlock. The Predecessors list
|
|
/// of succ is automatically updated. WEIGHT parameter is stored in Weights
|
|
/// list and it may be used by MachineBranchProbabilityInfo analysis to
|
|
/// calculate branch probability.
|
|
///
|
|
/// Note that duplicate Machine CFG edges are not allowed.
|
|
void addSuccessor(MachineBasicBlock *succ, uint32_t weight = 0);
|
|
|
|
/// Set successor weight of a given iterator.
|
|
void setSuccWeight(succ_iterator I, uint32_t weight);
|
|
|
|
/// Remove successor from the successors list of this MachineBasicBlock. The
|
|
/// Predecessors list of succ is automatically updated.
|
|
void removeSuccessor(MachineBasicBlock *succ);
|
|
|
|
/// Remove specified successor from the successors list of this
|
|
/// MachineBasicBlock. The Predecessors list of succ is automatically updated.
|
|
/// Return the iterator to the element after the one removed.
|
|
succ_iterator removeSuccessor(succ_iterator I);
|
|
|
|
/// Replace successor OLD with NEW and update weight info.
|
|
void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
|
|
|
|
/// Transfers all the successors from MBB to this machine basic block (i.e.,
|
|
/// copies all the successors fromMBB and remove all the successors from
|
|
/// fromMBB).
|
|
void transferSuccessors(MachineBasicBlock *fromMBB);
|
|
|
|
/// Transfers all the successors, as in transferSuccessors, and update PHI
|
|
/// operands in the successor blocks which refer to fromMBB to refer to this.
|
|
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB);
|
|
|
|
/// Return true if any of the successors have weights attached to them.
|
|
bool hasSuccessorWeights() const { return !Weights.empty(); }
|
|
|
|
/// Return true if the specified MBB is a predecessor of this block.
|
|
bool isPredecessor(const MachineBasicBlock *MBB) const;
|
|
|
|
/// Return true if the specified MBB is a successor of this block.
|
|
bool isSuccessor(const MachineBasicBlock *MBB) const;
|
|
|
|
/// Return true if the specified MBB will be emitted immediately after this
|
|
/// block, such that if this block exits by falling through, control will
|
|
/// transfer to the specified MBB. Note that MBB need not be a successor at
|
|
/// all, for example if this block ends with an unconditional branch to some
|
|
/// other block.
|
|
bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
|
|
|
|
/// Return true if the block can implicitly transfer control to the block
|
|
/// after it by falling off the end of it. This should return false if it can
|
|
/// reach the block after it, but it uses an explicit branch to do so (e.g., a
|
|
/// table jump). True is a conservative answer.
|
|
bool canFallThrough();
|
|
|
|
/// Returns a pointer to the first instruction in this block that is not a
|
|
/// PHINode instruction. When adding instructions to the beginning of the
|
|
/// basic block, they should be added before the returned value, not before
|
|
/// the first instruction, which might be PHI.
|
|
/// Returns end() is there's no non-PHI instruction.
|
|
iterator getFirstNonPHI();
|
|
|
|
/// Return the first instruction in MBB after I that is not a PHI or a label.
|
|
/// This is the correct point to insert copies at the beginning of a basic
|
|
/// block.
|
|
iterator SkipPHIsAndLabels(iterator I);
|
|
|
|
/// Returns an iterator to the first terminator instruction of this basic
|
|
/// block. If a terminator does not exist, it returns end().
|
|
iterator getFirstTerminator();
|
|
const_iterator getFirstTerminator() const {
|
|
return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
|
|
}
|
|
|
|
/// Same getFirstTerminator but it ignores bundles and return an
|
|
/// instr_iterator instead.
|
|
instr_iterator getFirstInstrTerminator();
|
|
|
|
/// Returns an iterator to the first non-debug instruction in the basic block,
|
|
/// or end().
|
|
iterator getFirstNonDebugInstr();
|
|
const_iterator getFirstNonDebugInstr() const {
|
|
return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
|
|
}
|
|
|
|
/// Returns an iterator to the last non-debug instruction in the basic block,
|
|
/// or end().
|
|
iterator getLastNonDebugInstr();
|
|
const_iterator getLastNonDebugInstr() const {
|
|
return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
|
|
}
|
|
|
|
/// Split the critical edge from this block to the given successor block, and
|
|
/// return the newly created block, or null if splitting is not possible.
|
|
///
|
|
/// This function updates LiveVariables, MachineDominatorTree, and
|
|
/// MachineLoopInfo, as applicable.
|
|
MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P);
|
|
|
|
void pop_front() { Insts.pop_front(); }
|
|
void pop_back() { Insts.pop_back(); }
|
|
void push_back(MachineInstr *MI) { Insts.push_back(MI); }
|
|
|
|
/// Insert MI into the instruction list before I, possibly inside a bundle.
|
|
///
|
|
/// If the insertion point is inside a bundle, MI will be added to the bundle,
|
|
/// otherwise MI will not be added to any bundle. That means this function
|
|
/// alone can't be used to prepend or append instructions to bundles. See
|
|
/// MIBundleBuilder::insert() for a more reliable way of doing that.
|
|
instr_iterator insert(instr_iterator I, MachineInstr *M);
|
|
|
|
/// Insert a range of instructions into the instruction list before I.
|
|
template<typename IT>
|
|
void insert(iterator I, IT S, IT E) {
|
|
assert((I == end() || I->getParent() == this) &&
|
|
"iterator points outside of basic block");
|
|
Insts.insert(I.getInstrIterator(), S, E);
|
|
}
|
|
|
|
/// Insert MI into the instruction list before I.
|
|
iterator insert(iterator I, MachineInstr *MI) {
|
|
assert((I == end() || I->getParent() == this) &&
|
|
"iterator points outside of basic block");
|
|
assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
|
|
"Cannot insert instruction with bundle flags");
|
|
return Insts.insert(I.getInstrIterator(), MI);
|
|
}
|
|
|
|
/// Insert MI into the instruction list after I.
|
|
iterator insertAfter(iterator I, MachineInstr *MI) {
|
|
assert((I == end() || I->getParent() == this) &&
|
|
"iterator points outside of basic block");
|
|
assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
|
|
"Cannot insert instruction with bundle flags");
|
|
return Insts.insertAfter(I.getInstrIterator(), MI);
|
|
}
|
|
|
|
/// Remove an instruction from the instruction list and delete it.
|
|
///
|
|
/// If the instruction is part of a bundle, the other instructions in the
|
|
/// bundle will still be bundled after removing the single instruction.
|
|
instr_iterator erase(instr_iterator I);
|
|
|
|
/// Remove an instruction from the instruction list and delete it.
|
|
///
|
|
/// If the instruction is part of a bundle, the other instructions in the
|
|
/// bundle will still be bundled after removing the single instruction.
|
|
instr_iterator erase_instr(MachineInstr *I) {
|
|
return erase(instr_iterator(I));
|
|
}
|
|
|
|
/// Remove a range of instructions from the instruction list and delete them.
|
|
iterator erase(iterator I, iterator E) {
|
|
return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
|
|
}
|
|
|
|
/// Remove an instruction or bundle from the instruction list and delete it.
|
|
///
|
|
/// If I points to a bundle of instructions, they are all erased.
|
|
iterator erase(iterator I) {
|
|
return erase(I, std::next(I));
|
|
}
|
|
|
|
/// Remove an instruction from the instruction list and delete it.
|
|
///
|
|
/// If I is the head of a bundle of instructions, the whole bundle will be
|
|
/// erased.
|
|
iterator erase(MachineInstr *I) {
|
|
return erase(iterator(I));
|
|
}
|
|
|
|
/// Remove the unbundled instruction from the instruction list without
|
|
/// deleting it.
|
|
///
|
|
/// This function can not be used to remove bundled instructions, use
|
|
/// remove_instr to remove individual instructions from a bundle.
|
|
MachineInstr *remove(MachineInstr *I) {
|
|
assert(!I->isBundled() && "Cannot remove bundled instructions");
|
|
return Insts.remove(I);
|
|
}
|
|
|
|
/// Remove the possibly bundled instruction from the instruction list
|
|
/// without deleting it.
|
|
///
|
|
/// If the instruction is part of a bundle, the other instructions in the
|
|
/// bundle will still be bundled after removing the single instruction.
|
|
MachineInstr *remove_instr(MachineInstr *I);
|
|
|
|
void clear() {
|
|
Insts.clear();
|
|
}
|
|
|
|
/// Take an instruction from MBB 'Other' at the position From, and insert it
|
|
/// into this MBB right before 'Where'.
|
|
///
|
|
/// If From points to a bundle of instructions, the whole bundle is moved.
|
|
void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
|
|
// The range splice() doesn't allow noop moves, but this one does.
|
|
if (Where != From)
|
|
splice(Where, Other, From, std::next(From));
|
|
}
|
|
|
|
/// Take a block of instructions from MBB 'Other' in the range [From, To),
|
|
/// and insert them into this MBB right before 'Where'.
|
|
///
|
|
/// The instruction at 'Where' must not be included in the range of
|
|
/// instructions to move.
|
|
void splice(iterator Where, MachineBasicBlock *Other,
|
|
iterator From, iterator To) {
|
|
Insts.splice(Where.getInstrIterator(), Other->Insts,
|
|
From.getInstrIterator(), To.getInstrIterator());
|
|
}
|
|
|
|
/// This method unlinks 'this' from the containing function, and returns it,
|
|
/// but does not delete it.
|
|
MachineBasicBlock *removeFromParent();
|
|
|
|
/// This method unlinks 'this' from the containing function and deletes it.
|
|
void eraseFromParent();
|
|
|
|
/// Given a machine basic block that branched to 'Old', change the code and
|
|
/// CFG so that it branches to 'New' instead.
|
|
void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
|
|
|
|
/// Various pieces of code can cause excess edges in the CFG to be inserted.
|
|
/// If we have proven that MBB can only branch to DestA and DestB, remove any
|
|
/// other MBB successors from the CFG. DestA and DestB can be null. Besides
|
|
/// DestA and DestB, retain other edges leading to LandingPads (currently
|
|
/// there can be only one; we don't check or require that here). Note it is
|
|
/// possible that DestA and/or DestB are LandingPads.
|
|
bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
|
|
MachineBasicBlock *DestB,
|
|
bool isCond);
|
|
|
|
/// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
|
|
/// instructions. Return UnknownLoc if there is none.
|
|
DebugLoc findDebugLoc(instr_iterator MBBI);
|
|
DebugLoc findDebugLoc(iterator MBBI) {
|
|
return findDebugLoc(MBBI.getInstrIterator());
|
|
}
|
|
|
|
/// Possible outcome of a register liveness query to computeRegisterLiveness()
|
|
enum LivenessQueryResult {
|
|
LQR_Live, ///< Register is known to be live.
|
|
LQR_OverlappingLive, ///< Register itself is not live, but some overlapping
|
|
///< register is.
|
|
LQR_Dead, ///< Register is known to be dead.
|
|
LQR_Unknown ///< Register liveness not decidable from local
|
|
///< neighborhood.
|
|
};
|
|
|
|
/// Return whether (physical) register \p Reg has been <def>ined and not
|
|
/// <kill>ed as of just before \p Before.
|
|
///
|
|
/// Search is localised to a neighborhood of \p Neighborhood instructions
|
|
/// before (searching for defs or kills) and \p Neighborhood instructions
|
|
/// after (searching just for defs) \p Before.
|
|
///
|
|
/// \p Reg must be a physical register.
|
|
LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
|
|
unsigned Reg,
|
|
const_iterator Before,
|
|
unsigned Neighborhood=10) const;
|
|
|
|
// Debugging methods.
|
|
void dump() const;
|
|
void print(raw_ostream &OS, SlotIndexes* = nullptr) const;
|
|
void print(raw_ostream &OS, ModuleSlotTracker &MST,
|
|
SlotIndexes * = nullptr) const;
|
|
|
|
// Printing method used by LoopInfo.
|
|
void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
|
|
|
|
/// MachineBasicBlocks are uniquely numbered at the function level, unless
|
|
/// they're not in a MachineFunction yet, in which case this will return -1.
|
|
int getNumber() const { return Number; }
|
|
void setNumber(int N) { Number = N; }
|
|
|
|
/// Return the MCSymbol for this basic block.
|
|
MCSymbol *getSymbol() const;
|
|
|
|
|
|
private:
|
|
/// Return weight iterator corresponding to the I successor iterator.
|
|
weight_iterator getWeightIterator(succ_iterator I);
|
|
const_weight_iterator getWeightIterator(const_succ_iterator I) const;
|
|
|
|
friend class MachineBranchProbabilityInfo;
|
|
friend class MIPrinter;
|
|
|
|
/// Return weight of the edge from this block to MBB. This method should NOT
|
|
/// be called directly, but by using getEdgeWeight method from
|
|
/// MachineBranchProbabilityInfo class.
|
|
uint32_t getSuccWeight(const_succ_iterator Succ) const;
|
|
|
|
|
|
// Methods used to maintain doubly linked list of blocks...
|
|
friend struct ilist_traits<MachineBasicBlock>;
|
|
|
|
// Machine-CFG mutators
|
|
|
|
/// Remove pred as a predecessor of this MachineBasicBlock. Don't do this
|
|
/// unless you know what you're doing, because it doesn't update pred's
|
|
/// successors list. Use pred->addSuccessor instead.
|
|
void addPredecessor(MachineBasicBlock *pred);
|
|
|
|
/// Remove pred as a predecessor of this MachineBasicBlock. Don't do this
|
|
/// unless you know what you're doing, because it doesn't update pred's
|
|
/// successors list. Use pred->removeSuccessor instead.
|
|
void removePredecessor(MachineBasicBlock *pred);
|
|
};
|
|
|
|
raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
|
|
|
|
// This is useful when building IndexedMaps keyed on basic block pointers.
|
|
struct MBB2NumberFunctor :
|
|
public std::unary_function<const MachineBasicBlock*, unsigned> {
|
|
unsigned operator()(const MachineBasicBlock *MBB) const {
|
|
return MBB->getNumber();
|
|
}
|
|
};
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// GraphTraits specializations for machine basic block graphs (machine-CFGs)
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// Provide specializations of GraphTraits to be able to treat a
|
|
// MachineFunction as a graph of MachineBasicBlocks.
|
|
//
|
|
|
|
template <> struct GraphTraits<MachineBasicBlock *> {
|
|
typedef MachineBasicBlock NodeType;
|
|
typedef MachineBasicBlock::succ_iterator ChildIteratorType;
|
|
|
|
static NodeType *getEntryNode(MachineBasicBlock *BB) { return BB; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return N->succ_begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return N->succ_end();
|
|
}
|
|
};
|
|
|
|
template <> struct GraphTraits<const MachineBasicBlock *> {
|
|
typedef const MachineBasicBlock NodeType;
|
|
typedef MachineBasicBlock::const_succ_iterator ChildIteratorType;
|
|
|
|
static NodeType *getEntryNode(const MachineBasicBlock *BB) { return BB; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return N->succ_begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return N->succ_end();
|
|
}
|
|
};
|
|
|
|
// Provide specializations of GraphTraits to be able to treat a
|
|
// MachineFunction as a graph of MachineBasicBlocks and to walk it
|
|
// in inverse order. Inverse order for a function is considered
|
|
// to be when traversing the predecessor edges of a MBB
|
|
// instead of the successor edges.
|
|
//
|
|
template <> struct GraphTraits<Inverse<MachineBasicBlock*> > {
|
|
typedef MachineBasicBlock NodeType;
|
|
typedef MachineBasicBlock::pred_iterator ChildIteratorType;
|
|
static NodeType *getEntryNode(Inverse<MachineBasicBlock *> G) {
|
|
return G.Graph;
|
|
}
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return N->pred_begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return N->pred_end();
|
|
}
|
|
};
|
|
|
|
template <> struct GraphTraits<Inverse<const MachineBasicBlock*> > {
|
|
typedef const MachineBasicBlock NodeType;
|
|
typedef MachineBasicBlock::const_pred_iterator ChildIteratorType;
|
|
static NodeType *getEntryNode(Inverse<const MachineBasicBlock*> G) {
|
|
return G.Graph;
|
|
}
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return N->pred_begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return N->pred_end();
|
|
}
|
|
};
|
|
|
|
|
|
|
|
/// MachineInstrSpan provides an interface to get an iteration range
|
|
/// containing the instruction it was initialized with, along with all
|
|
/// those instructions inserted prior to or following that instruction
|
|
/// at some point after the MachineInstrSpan is constructed.
|
|
class MachineInstrSpan {
|
|
MachineBasicBlock &MBB;
|
|
MachineBasicBlock::iterator I, B, E;
|
|
public:
|
|
MachineInstrSpan(MachineBasicBlock::iterator I)
|
|
: MBB(*I->getParent()),
|
|
I(I),
|
|
B(I == MBB.begin() ? MBB.end() : std::prev(I)),
|
|
E(std::next(I)) {}
|
|
|
|
MachineBasicBlock::iterator begin() {
|
|
return B == MBB.end() ? MBB.begin() : std::next(B);
|
|
}
|
|
MachineBasicBlock::iterator end() { return E; }
|
|
bool empty() { return begin() == end(); }
|
|
|
|
MachineBasicBlock::iterator getInitial() { return I; }
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|