llvm-mirror/lib/ExecutionEngine/ExecutionEngine.cpp
Chris Lattner bfb822f655 Fix typeos
llvm-svn: 6204
2003-05-14 17:53:49 +00:00

381 lines
15 KiB
C++

//===-- ExecutionEngine.cpp - Common Implementation shared by EE's --------===//
//
// This file defines the common interface used by the various execution engine
// subclasses.
//
//===----------------------------------------------------------------------===//
#include "ExecutionEngine.h"
#include "GenericValue.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/Target/TargetData.h"
#include "Support/Statistic.h"
#include <dlfcn.h>
Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized");
// getPointerToGlobal - This returns the address of the specified global
// value. This may involve code generation if it's a function.
//
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
if (const Function *F = dyn_cast<Function>(GV))
return getPointerToFunction(F);
assert(GlobalAddress[GV] && "Global hasn't had an address allocated yet?");
return GlobalAddress[GV];
}
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
GenericValue Result;
if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) {
switch (CE->getOpcode()) {
case Instruction::GetElementPtr: {
Result = getConstantValue(CE->getOperand(0));
std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end());
uint64_t Offset =
TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes);
Result.LongVal += Offset;
return Result;
}
case Instruction::Cast: {
// We only need to handle a few cases here. Almost all casts will
// automatically fold, just the ones involving pointers won't.
//
Constant *Op = CE->getOperand(0);
// Handle cast of pointer to pointer...
if (Op->getType()->getPrimitiveID() == C->getType()->getPrimitiveID())
return getConstantValue(Op);
// Handle cast of long to pointer or pointer to long...
if ((isa<PointerType>(Op->getType()) && (C->getType() == Type::LongTy ||
C->getType() == Type::ULongTy))||
(isa<PointerType>(C->getType()) && (Op->getType() == Type::LongTy ||
Op->getType() == Type::ULongTy))){
return getConstantValue(Op);
}
break;
}
case Instruction::Add:
if (CE->getOperand(0)->getType() == Type::LongTy ||
CE->getOperand(0)->getType() == Type::ULongTy)
Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal +
getConstantValue(CE->getOperand(1)).LongVal;
else
break;
return Result;
default:
break;
}
std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
abort();
}
switch (C->getType()->getPrimitiveID()) {
#define GET_CONST_VAL(TY, CLASS) \
case Type::TY##TyID: Result.TY##Val = cast<CLASS>(C)->getValue(); break
GET_CONST_VAL(Bool , ConstantBool);
GET_CONST_VAL(UByte , ConstantUInt);
GET_CONST_VAL(SByte , ConstantSInt);
GET_CONST_VAL(UShort , ConstantUInt);
GET_CONST_VAL(Short , ConstantSInt);
GET_CONST_VAL(UInt , ConstantUInt);
GET_CONST_VAL(Int , ConstantSInt);
GET_CONST_VAL(ULong , ConstantUInt);
GET_CONST_VAL(Long , ConstantSInt);
GET_CONST_VAL(Float , ConstantFP);
GET_CONST_VAL(Double , ConstantFP);
#undef GET_CONST_VAL
case Type::PointerTyID:
if (isa<ConstantPointerNull>(C)) {
Result.PointerVal = 0;
} else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)){
Result = PTOGV(getPointerToGlobal(CPR->getValue()));
} else {
assert(0 && "Unknown constant pointer type!");
}
break;
default:
std::cout << "ERROR: Constant unimp for type: " << C->getType() << "\n";
abort();
}
return Result;
}
void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
const Type *Ty) {
if (getTargetData().isLittleEndian()) {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255;
Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255;
break;
Store4BytesLittleEndian:
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255;
Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255;
Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255;
Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255;
break;
case Type::PointerTyID: if (CurMod.has32BitPointers())
goto Store4BytesLittleEndian;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID: Ptr->Untyped[0] = Val.ULongVal & 255;
Ptr->Untyped[1] = (Val.ULongVal >> 8) & 255;
Ptr->Untyped[2] = (Val.ULongVal >> 16) & 255;
Ptr->Untyped[3] = (Val.ULongVal >> 24) & 255;
Ptr->Untyped[4] = (Val.ULongVal >> 32) & 255;
Ptr->Untyped[5] = (Val.ULongVal >> 40) & 255;
Ptr->Untyped[6] = (Val.ULongVal >> 48) & 255;
Ptr->Untyped[7] = (Val.ULongVal >> 56) & 255;
break;
default:
std::cout << "Cannot store value of type " << Ty << "!\n";
}
} else {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255;
Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255;
break;
Store4BytesBigEndian:
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255;
Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255;
Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255;
Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255;
break;
case Type::PointerTyID: if (CurMod.has32BitPointers())
goto Store4BytesBigEndian;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID: Ptr->Untyped[7] = Val.ULongVal & 255;
Ptr->Untyped[6] = (Val.ULongVal >> 8) & 255;
Ptr->Untyped[5] = (Val.ULongVal >> 16) & 255;
Ptr->Untyped[4] = (Val.ULongVal >> 24) & 255;
Ptr->Untyped[3] = (Val.ULongVal >> 32) & 255;
Ptr->Untyped[2] = (Val.ULongVal >> 40) & 255;
Ptr->Untyped[1] = (Val.ULongVal >> 48) & 255;
Ptr->Untyped[0] = (Val.ULongVal >> 56) & 255;
break;
default:
std::cout << "Cannot store value of type " << Ty << "!\n";
}
}
}
GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr,
const Type *Ty) {
GenericValue Result;
if (getTargetData().isLittleEndian()) {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break;
case Type::UShortTyID:
case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] |
((unsigned)Ptr->Untyped[1] << 8);
break;
Load4BytesLittleEndian:
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] |
((unsigned)Ptr->Untyped[1] << 8) |
((unsigned)Ptr->Untyped[2] << 16) |
((unsigned)Ptr->Untyped[3] << 24);
break;
case Type::PointerTyID: if (getModule().has32BitPointers())
goto Load4BytesLittleEndian;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] |
((uint64_t)Ptr->Untyped[1] << 8) |
((uint64_t)Ptr->Untyped[2] << 16) |
((uint64_t)Ptr->Untyped[3] << 24) |
((uint64_t)Ptr->Untyped[4] << 32) |
((uint64_t)Ptr->Untyped[5] << 40) |
((uint64_t)Ptr->Untyped[6] << 48) |
((uint64_t)Ptr->Untyped[7] << 56);
break;
default:
std::cout << "Cannot load value of type " << *Ty << "!\n";
abort();
}
} else {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break;
case Type::UShortTyID:
case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] |
((unsigned)Ptr->Untyped[0] << 8);
break;
Load4BytesBigEndian:
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] |
((unsigned)Ptr->Untyped[2] << 8) |
((unsigned)Ptr->Untyped[1] << 16) |
((unsigned)Ptr->Untyped[0] << 24);
break;
case Type::PointerTyID: if (getModule().has32BitPointers())
goto Load4BytesBigEndian;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] |
((uint64_t)Ptr->Untyped[6] << 8) |
((uint64_t)Ptr->Untyped[5] << 16) |
((uint64_t)Ptr->Untyped[4] << 24) |
((uint64_t)Ptr->Untyped[3] << 32) |
((uint64_t)Ptr->Untyped[2] << 40) |
((uint64_t)Ptr->Untyped[1] << 48) |
((uint64_t)Ptr->Untyped[0] << 56);
break;
default:
std::cout << "Cannot load value of type " << *Ty << "!\n";
abort();
}
}
return Result;
}
// InitializeMemory - Recursive function to apply a Constant value into the
// specified memory location...
//
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
if (Init->getType()->isFirstClassType()) {
GenericValue Val = getConstantValue(Init);
StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
return;
}
switch (Init->getType()->getPrimitiveID()) {
case Type::ArrayTyID: {
const ConstantArray *CPA = cast<ConstantArray>(Init);
const std::vector<Use> &Val = CPA->getValues();
unsigned ElementSize =
getTargetData().getTypeSize(cast<ArrayType>(CPA->getType())->getElementType());
for (unsigned i = 0; i < Val.size(); ++i)
InitializeMemory(cast<Constant>(Val[i].get()), (char*)Addr+i*ElementSize);
return;
}
case Type::StructTyID: {
const ConstantStruct *CPS = cast<ConstantStruct>(Init);
const StructLayout *SL =
getTargetData().getStructLayout(cast<StructType>(CPS->getType()));
const std::vector<Use> &Val = CPS->getValues();
for (unsigned i = 0; i < Val.size(); ++i)
InitializeMemory(cast<Constant>(Val[i].get()),
(char*)Addr+SL->MemberOffsets[i]);
return;
}
default:
std::cerr << "Bad Type: " << Init->getType() << "\n";
assert(0 && "Unknown constant type to initialize memory with!");
}
}
void *ExecutionEngine::CreateArgv(const std::vector<std::string> &InputArgv) {
if (getTargetData().getPointerSize() == 8) { // 64 bit target?
PointerTy *Result = new PointerTy[InputArgv.size()+1];
DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n");
for (unsigned i = 0; i < InputArgv.size(); ++i) {
unsigned Size = InputArgv[i].size()+1;
char *Dest = new char[Size];
DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n");
copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
Dest[Size-1] = 0;
// Endian safe: Result[i] = (PointerTy)Dest;
StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i), Type::LongTy);
}
Result[InputArgv.size()] = 0;
return Result;
} else { // 32 bit target?
int *Result = new int[InputArgv.size()+1];
DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n");
for (unsigned i = 0; i < InputArgv.size(); ++i) {
unsigned Size = InputArgv[i].size()+1;
char *Dest = new char[Size];
DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n");
copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
Dest[Size-1] = 0;
// Endian safe: Result[i] = (PointerTy)Dest;
StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i), Type::IntTy);
}
Result[InputArgv.size()] = 0; // null terminate it
return Result;
}
}
/// EmitGlobals - Emit all of the global variables to memory, storing their
/// addresses into GlobalAddress. This must make sure to copy the contents of
/// their initializers into the memory.
///
void ExecutionEngine::emitGlobals() {
const TargetData &TD = getTargetData();
// Loop over all of the global variables in the program, allocating the memory
// to hold them.
for (Module::giterator I = getModule().gbegin(), E = getModule().gend();
I != E; ++I)
if (!I->isExternal()) {
// Get the type of the global...
const Type *Ty = I->getType()->getElementType();
// Allocate some memory for it!
unsigned Size = TD.getTypeSize(Ty);
GlobalAddress[I] = new char[Size];
NumInitBytes += Size;
DEBUG(std::cerr << "Global '" << I->getName() << "' -> "
<< (void*)GlobalAddress[I] << "\n");
} else {
// External variable reference, try to use dlsym to get a pointer to it in
// the LLI image.
if (void *SymAddr = dlsym(0, I->getName().c_str()))
GlobalAddress[I] = SymAddr;
else {
std::cerr << "Could not resolve external global address: "
<< I->getName() << "\n";
abort();
}
}
// Now that all of the globals are set up in memory, loop through them all and
// initialize their contents.
for (Module::giterator I = getModule().gbegin(), E = getModule().gend();
I != E; ++I)
if (!I->isExternal())
InitializeMemory(I->getInitializer(), GlobalAddress[I]);
}