mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-01 08:28:19 +00:00
e1f9be27bc
llvm-svn: 55779
654 lines
23 KiB
C++
654 lines
23 KiB
C++
//===- RSProfiling.cpp - Various profiling using random sampling ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// These passes implement a random sampling based profiling. Different methods
|
|
// of choosing when to sample are supported, as well as different types of
|
|
// profiling. This is done as two passes. The first is a sequence of profiling
|
|
// passes which insert profiling into the program, and remember what they
|
|
// inserted.
|
|
//
|
|
// The second stage duplicates all instructions in a function, ignoring the
|
|
// profiling code, then connects the two versions togeather at the entry and at
|
|
// backedges. At each connection point a choice is made as to whether to jump
|
|
// to the profiled code (take a sample) or execute the unprofiled code.
|
|
//
|
|
// It is highly recommended that after this pass one runs mem2reg and adce
|
|
// (instcombine load-vn gdce dse also are good to run afterwards)
|
|
//
|
|
// This design is intended to make the profiling passes independent of the RS
|
|
// framework, but any profiling pass that implements the RSProfiling interface
|
|
// is compatible with the rs framework (and thus can be sampled)
|
|
//
|
|
// TODO: obviously the block and function profiling are almost identical to the
|
|
// existing ones, so they can be unified (esp since these passes are valid
|
|
// without the rs framework).
|
|
// TODO: Fix choice code so that frequency is not hard coded
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "RSProfiling.h"
|
|
#include <set>
|
|
#include <map>
|
|
#include <queue>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
enum RandomMeth {
|
|
GBV, GBVO, HOSTCC
|
|
};
|
|
}
|
|
|
|
static cl::opt<RandomMeth> RandomMethod("profile-randomness",
|
|
cl::desc("How to randomly choose to profile:"),
|
|
cl::values(
|
|
clEnumValN(GBV, "global", "global counter"),
|
|
clEnumValN(GBVO, "ra_global",
|
|
"register allocated global counter"),
|
|
clEnumValN(HOSTCC, "rdcc", "cycle counter"),
|
|
clEnumValEnd));
|
|
|
|
namespace {
|
|
/// NullProfilerRS - The basic profiler that does nothing. It is the default
|
|
/// profiler and thus terminates RSProfiler chains. It is useful for
|
|
/// measuring framework overhead
|
|
class VISIBILITY_HIDDEN NullProfilerRS : public RSProfilers {
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
bool isProfiling(Value* v) {
|
|
return false;
|
|
}
|
|
bool runOnModule(Module &M) {
|
|
return false;
|
|
}
|
|
void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
}
|
|
};
|
|
}
|
|
|
|
static RegisterAnalysisGroup<RSProfilers> A("Profiling passes");
|
|
static RegisterPass<NullProfilerRS> NP("insert-null-profiling-rs",
|
|
"Measure profiling framework overhead");
|
|
static RegisterAnalysisGroup<RSProfilers, true> NPT(NP);
|
|
|
|
namespace {
|
|
/// Chooser - Something that chooses when to make a sample of the profiled code
|
|
class VISIBILITY_HIDDEN Chooser {
|
|
public:
|
|
/// ProcessChoicePoint - is called for each basic block inserted to choose
|
|
/// between normal and sample code
|
|
virtual void ProcessChoicePoint(BasicBlock*) = 0;
|
|
/// PrepFunction - is called once per function before other work is done.
|
|
/// This gives the opertunity to insert new allocas and such.
|
|
virtual void PrepFunction(Function*) = 0;
|
|
virtual ~Chooser() {}
|
|
};
|
|
|
|
//Things that implement sampling policies
|
|
//A global value that is read-mod-stored to choose when to sample.
|
|
//A sample is taken when the global counter hits 0
|
|
class VISIBILITY_HIDDEN GlobalRandomCounter : public Chooser {
|
|
GlobalVariable* Counter;
|
|
Value* ResetValue;
|
|
const Type* T;
|
|
public:
|
|
GlobalRandomCounter(Module& M, const Type* t, uint64_t resetval);
|
|
virtual ~GlobalRandomCounter();
|
|
virtual void PrepFunction(Function* F);
|
|
virtual void ProcessChoicePoint(BasicBlock* bb);
|
|
};
|
|
|
|
//Same is GRC, but allow register allocation of the global counter
|
|
class VISIBILITY_HIDDEN GlobalRandomCounterOpt : public Chooser {
|
|
GlobalVariable* Counter;
|
|
Value* ResetValue;
|
|
AllocaInst* AI;
|
|
const Type* T;
|
|
public:
|
|
GlobalRandomCounterOpt(Module& M, const Type* t, uint64_t resetval);
|
|
virtual ~GlobalRandomCounterOpt();
|
|
virtual void PrepFunction(Function* F);
|
|
virtual void ProcessChoicePoint(BasicBlock* bb);
|
|
};
|
|
|
|
//Use the cycle counter intrinsic as a source of pseudo randomness when
|
|
//deciding when to sample.
|
|
class VISIBILITY_HIDDEN CycleCounter : public Chooser {
|
|
uint64_t rm;
|
|
Constant *F;
|
|
public:
|
|
CycleCounter(Module& m, uint64_t resetmask);
|
|
virtual ~CycleCounter();
|
|
virtual void PrepFunction(Function* F);
|
|
virtual void ProcessChoicePoint(BasicBlock* bb);
|
|
};
|
|
|
|
/// ProfilerRS - Insert the random sampling framework
|
|
struct VISIBILITY_HIDDEN ProfilerRS : public FunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
ProfilerRS() : FunctionPass(&ID) {}
|
|
|
|
std::map<Value*, Value*> TransCache;
|
|
std::set<BasicBlock*> ChoicePoints;
|
|
Chooser* c;
|
|
|
|
//Translate and duplicate values for the new profile free version of stuff
|
|
Value* Translate(Value* v);
|
|
//Duplicate an entire function (with out profiling)
|
|
void Duplicate(Function& F, RSProfilers& LI);
|
|
//Called once for each backedge, handle the insertion of choice points and
|
|
//the interconection of the two versions of the code
|
|
void ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F);
|
|
bool runOnFunction(Function& F);
|
|
bool doInitialization(Module &M);
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
|
|
};
|
|
}
|
|
|
|
static RegisterPass<ProfilerRS>
|
|
X("insert-rs-profiling-framework",
|
|
"Insert random sampling instrumentation framework");
|
|
|
|
char RSProfilers::ID = 0;
|
|
char NullProfilerRS::ID = 0;
|
|
char ProfilerRS::ID = 0;
|
|
|
|
//Local utilities
|
|
static void ReplacePhiPred(BasicBlock* btarget,
|
|
BasicBlock* bold, BasicBlock* bnew);
|
|
|
|
static void CollapsePhi(BasicBlock* btarget, BasicBlock* bsrc);
|
|
|
|
template<class T>
|
|
static void recBackEdge(BasicBlock* bb, T& BackEdges,
|
|
std::map<BasicBlock*, int>& color,
|
|
std::map<BasicBlock*, int>& depth,
|
|
std::map<BasicBlock*, int>& finish,
|
|
int& time);
|
|
|
|
//find the back edges and where they go to
|
|
template<class T>
|
|
static void getBackEdges(Function& F, T& BackEdges);
|
|
|
|
|
|
///////////////////////////////////////
|
|
// Methods of choosing when to profile
|
|
///////////////////////////////////////
|
|
|
|
GlobalRandomCounter::GlobalRandomCounter(Module& M, const Type* t,
|
|
uint64_t resetval) : T(t) {
|
|
ConstantInt* Init = ConstantInt::get(T, resetval);
|
|
ResetValue = Init;
|
|
Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
|
|
Init, "RandomSteeringCounter", &M);
|
|
}
|
|
|
|
GlobalRandomCounter::~GlobalRandomCounter() {}
|
|
|
|
void GlobalRandomCounter::PrepFunction(Function* F) {}
|
|
|
|
void GlobalRandomCounter::ProcessChoicePoint(BasicBlock* bb) {
|
|
BranchInst* t = cast<BranchInst>(bb->getTerminator());
|
|
|
|
//decrement counter
|
|
LoadInst* l = new LoadInst(Counter, "counter", t);
|
|
|
|
ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l, ConstantInt::get(T, 0),
|
|
"countercc", t);
|
|
|
|
Value* nv = BinaryOperator::CreateSub(l, ConstantInt::get(T, 1),
|
|
"counternew", t);
|
|
new StoreInst(nv, Counter, t);
|
|
t->setCondition(s);
|
|
|
|
//reset counter
|
|
BasicBlock* oldnext = t->getSuccessor(0);
|
|
BasicBlock* resetblock = BasicBlock::Create("reset", oldnext->getParent(),
|
|
oldnext);
|
|
TerminatorInst* t2 = BranchInst::Create(oldnext, resetblock);
|
|
t->setSuccessor(0, resetblock);
|
|
new StoreInst(ResetValue, Counter, t2);
|
|
ReplacePhiPred(oldnext, bb, resetblock);
|
|
}
|
|
|
|
GlobalRandomCounterOpt::GlobalRandomCounterOpt(Module& M, const Type* t,
|
|
uint64_t resetval)
|
|
: AI(0), T(t) {
|
|
ConstantInt* Init = ConstantInt::get(T, resetval);
|
|
ResetValue = Init;
|
|
Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
|
|
Init, "RandomSteeringCounter", &M);
|
|
}
|
|
|
|
GlobalRandomCounterOpt::~GlobalRandomCounterOpt() {}
|
|
|
|
void GlobalRandomCounterOpt::PrepFunction(Function* F) {
|
|
//make a local temporary to cache the global
|
|
BasicBlock& bb = F->getEntryBlock();
|
|
BasicBlock::iterator InsertPt = bb.begin();
|
|
AI = new AllocaInst(T, 0, "localcounter", InsertPt);
|
|
LoadInst* l = new LoadInst(Counter, "counterload", InsertPt);
|
|
new StoreInst(l, AI, InsertPt);
|
|
|
|
//modify all functions and return values to restore the local variable to/from
|
|
//the global variable
|
|
for(Function::iterator fib = F->begin(), fie = F->end();
|
|
fib != fie; ++fib)
|
|
for(BasicBlock::iterator bib = fib->begin(), bie = fib->end();
|
|
bib != bie; ++bib)
|
|
if (isa<CallInst>(bib)) {
|
|
LoadInst* l = new LoadInst(AI, "counter", bib);
|
|
new StoreInst(l, Counter, bib);
|
|
l = new LoadInst(Counter, "counter", ++bib);
|
|
new StoreInst(l, AI, bib--);
|
|
} else if (isa<InvokeInst>(bib)) {
|
|
LoadInst* l = new LoadInst(AI, "counter", bib);
|
|
new StoreInst(l, Counter, bib);
|
|
|
|
BasicBlock* bb = cast<InvokeInst>(bib)->getNormalDest();
|
|
BasicBlock::iterator i = bb->getFirstNonPHI();
|
|
l = new LoadInst(Counter, "counter", i);
|
|
|
|
bb = cast<InvokeInst>(bib)->getUnwindDest();
|
|
i = bb->getFirstNonPHI();
|
|
l = new LoadInst(Counter, "counter", i);
|
|
new StoreInst(l, AI, i);
|
|
} else if (isa<UnwindInst>(&*bib) || isa<ReturnInst>(&*bib)) {
|
|
LoadInst* l = new LoadInst(AI, "counter", bib);
|
|
new StoreInst(l, Counter, bib);
|
|
}
|
|
}
|
|
|
|
void GlobalRandomCounterOpt::ProcessChoicePoint(BasicBlock* bb) {
|
|
BranchInst* t = cast<BranchInst>(bb->getTerminator());
|
|
|
|
//decrement counter
|
|
LoadInst* l = new LoadInst(AI, "counter", t);
|
|
|
|
ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l, ConstantInt::get(T, 0),
|
|
"countercc", t);
|
|
|
|
Value* nv = BinaryOperator::CreateSub(l, ConstantInt::get(T, 1),
|
|
"counternew", t);
|
|
new StoreInst(nv, AI, t);
|
|
t->setCondition(s);
|
|
|
|
//reset counter
|
|
BasicBlock* oldnext = t->getSuccessor(0);
|
|
BasicBlock* resetblock = BasicBlock::Create("reset", oldnext->getParent(),
|
|
oldnext);
|
|
TerminatorInst* t2 = BranchInst::Create(oldnext, resetblock);
|
|
t->setSuccessor(0, resetblock);
|
|
new StoreInst(ResetValue, AI, t2);
|
|
ReplacePhiPred(oldnext, bb, resetblock);
|
|
}
|
|
|
|
|
|
CycleCounter::CycleCounter(Module& m, uint64_t resetmask) : rm(resetmask) {
|
|
F = Intrinsic::getDeclaration(&m, Intrinsic::readcyclecounter);
|
|
}
|
|
|
|
CycleCounter::~CycleCounter() {}
|
|
|
|
void CycleCounter::PrepFunction(Function* F) {}
|
|
|
|
void CycleCounter::ProcessChoicePoint(BasicBlock* bb) {
|
|
BranchInst* t = cast<BranchInst>(bb->getTerminator());
|
|
|
|
CallInst* c = CallInst::Create(F, "rdcc", t);
|
|
BinaryOperator* b =
|
|
BinaryOperator::CreateAnd(c, ConstantInt::get(Type::Int64Ty, rm),
|
|
"mrdcc", t);
|
|
|
|
ICmpInst *s = new ICmpInst(ICmpInst::ICMP_EQ, b,
|
|
ConstantInt::get(Type::Int64Ty, 0),
|
|
"mrdccc", t);
|
|
|
|
t->setCondition(s);
|
|
}
|
|
|
|
///////////////////////////////////////
|
|
// Profiling:
|
|
///////////////////////////////////////
|
|
bool RSProfilers_std::isProfiling(Value* v) {
|
|
if (profcode.find(v) != profcode.end())
|
|
return true;
|
|
//else
|
|
RSProfilers& LI = getAnalysis<RSProfilers>();
|
|
return LI.isProfiling(v);
|
|
}
|
|
|
|
void RSProfilers_std::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
|
|
GlobalValue *CounterArray) {
|
|
// Insert the increment after any alloca or PHI instructions...
|
|
BasicBlock::iterator InsertPos = BB->getFirstNonPHI();
|
|
while (isa<AllocaInst>(InsertPos))
|
|
++InsertPos;
|
|
|
|
// Create the getelementptr constant expression
|
|
std::vector<Constant*> Indices(2);
|
|
Indices[0] = Constant::getNullValue(Type::Int32Ty);
|
|
Indices[1] = ConstantInt::get(Type::Int32Ty, CounterNum);
|
|
Constant *ElementPtr = ConstantExpr::getGetElementPtr(CounterArray,
|
|
&Indices[0], 2);
|
|
|
|
// Load, increment and store the value back.
|
|
Value *OldVal = new LoadInst(ElementPtr, "OldCounter", InsertPos);
|
|
profcode.insert(OldVal);
|
|
Value *NewVal = BinaryOperator::CreateAdd(OldVal,
|
|
ConstantInt::get(Type::Int32Ty, 1),
|
|
"NewCounter", InsertPos);
|
|
profcode.insert(NewVal);
|
|
profcode.insert(new StoreInst(NewVal, ElementPtr, InsertPos));
|
|
}
|
|
|
|
void RSProfilers_std::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
//grab any outstanding profiler, or get the null one
|
|
AU.addRequired<RSProfilers>();
|
|
}
|
|
|
|
///////////////////////////////////////
|
|
// RS Framework
|
|
///////////////////////////////////////
|
|
|
|
Value* ProfilerRS::Translate(Value* v) {
|
|
if(TransCache[v])
|
|
return TransCache[v];
|
|
|
|
if (BasicBlock* bb = dyn_cast<BasicBlock>(v)) {
|
|
if (bb == &bb->getParent()->getEntryBlock())
|
|
TransCache[bb] = bb; //don't translate entry block
|
|
else
|
|
TransCache[bb] = BasicBlock::Create("dup_" + bb->getName(),
|
|
bb->getParent(), NULL);
|
|
return TransCache[bb];
|
|
} else if (Instruction* i = dyn_cast<Instruction>(v)) {
|
|
//we have already translated this
|
|
//do not translate entry block allocas
|
|
if(&i->getParent()->getParent()->getEntryBlock() == i->getParent()) {
|
|
TransCache[i] = i;
|
|
return i;
|
|
} else {
|
|
//translate this
|
|
Instruction* i2 = i->clone();
|
|
if (i->hasName())
|
|
i2->setName("dup_" + i->getName());
|
|
TransCache[i] = i2;
|
|
//NumNewInst++;
|
|
for (unsigned x = 0; x < i2->getNumOperands(); ++x)
|
|
i2->setOperand(x, Translate(i2->getOperand(x)));
|
|
return i2;
|
|
}
|
|
} else if (isa<Function>(v) || isa<Constant>(v) || isa<Argument>(v)) {
|
|
TransCache[v] = v;
|
|
return v;
|
|
}
|
|
assert(0 && "Value not handled");
|
|
return 0;
|
|
}
|
|
|
|
void ProfilerRS::Duplicate(Function& F, RSProfilers& LI)
|
|
{
|
|
//perform a breadth first search, building up a duplicate of the code
|
|
std::queue<BasicBlock*> worklist;
|
|
std::set<BasicBlock*> seen;
|
|
|
|
//This loop ensures proper BB order, to help performance
|
|
for (Function::iterator fib = F.begin(), fie = F.end(); fib != fie; ++fib)
|
|
worklist.push(fib);
|
|
while (!worklist.empty()) {
|
|
Translate(worklist.front());
|
|
worklist.pop();
|
|
}
|
|
|
|
//remember than reg2mem created a new entry block we don't want to duplicate
|
|
worklist.push(F.getEntryBlock().getTerminator()->getSuccessor(0));
|
|
seen.insert(&F.getEntryBlock());
|
|
|
|
while (!worklist.empty()) {
|
|
BasicBlock* bb = worklist.front();
|
|
worklist.pop();
|
|
if(seen.find(bb) == seen.end()) {
|
|
BasicBlock* bbtarget = cast<BasicBlock>(Translate(bb));
|
|
BasicBlock::InstListType& instlist = bbtarget->getInstList();
|
|
for (BasicBlock::iterator iib = bb->begin(), iie = bb->end();
|
|
iib != iie; ++iib) {
|
|
//NumOldInst++;
|
|
if (!LI.isProfiling(&*iib)) {
|
|
Instruction* i = cast<Instruction>(Translate(iib));
|
|
instlist.insert(bbtarget->end(), i);
|
|
}
|
|
}
|
|
//updated search state;
|
|
seen.insert(bb);
|
|
TerminatorInst* ti = bb->getTerminator();
|
|
for (unsigned x = 0; x < ti->getNumSuccessors(); ++x) {
|
|
BasicBlock* bbs = ti->getSuccessor(x);
|
|
if (seen.find(bbs) == seen.end()) {
|
|
worklist.push(bbs);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ProfilerRS::ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F) {
|
|
//given a backedge from B -> A, and translations A' and B',
|
|
//a: insert C and C'
|
|
//b: add branches in C to A and A' and in C' to A and A'
|
|
//c: mod terminators@B, replace A with C
|
|
//d: mod terminators@B', replace A' with C'
|
|
//e: mod phis@A for pred B to be pred C
|
|
// if multiple entries, simplify to one
|
|
//f: mod phis@A' for pred B' to be pred C'
|
|
// if multiple entries, simplify to one
|
|
//g: for all phis@A with pred C using x
|
|
// add in edge from C' using x'
|
|
// add in edge from C using x in A'
|
|
|
|
//a:
|
|
Function::iterator BBN = src; ++BBN;
|
|
BasicBlock* bbC = BasicBlock::Create("choice", &F, BBN);
|
|
//ChoicePoints.insert(bbC);
|
|
BBN = cast<BasicBlock>(Translate(src));
|
|
BasicBlock* bbCp = BasicBlock::Create("choice", &F, ++BBN);
|
|
ChoicePoints.insert(bbCp);
|
|
|
|
//b:
|
|
BranchInst::Create(cast<BasicBlock>(Translate(dst)), bbC);
|
|
BranchInst::Create(dst, cast<BasicBlock>(Translate(dst)),
|
|
ConstantInt::get(Type::Int1Ty, true), bbCp);
|
|
//c:
|
|
{
|
|
TerminatorInst* iB = src->getTerminator();
|
|
for (unsigned x = 0; x < iB->getNumSuccessors(); ++x)
|
|
if (iB->getSuccessor(x) == dst)
|
|
iB->setSuccessor(x, bbC);
|
|
}
|
|
//d:
|
|
{
|
|
TerminatorInst* iBp = cast<TerminatorInst>(Translate(src->getTerminator()));
|
|
for (unsigned x = 0; x < iBp->getNumSuccessors(); ++x)
|
|
if (iBp->getSuccessor(x) == cast<BasicBlock>(Translate(dst)))
|
|
iBp->setSuccessor(x, bbCp);
|
|
}
|
|
//e:
|
|
ReplacePhiPred(dst, src, bbC);
|
|
//src could be a switch, in which case we are replacing several edges with one
|
|
//thus collapse those edges int the Phi
|
|
CollapsePhi(dst, bbC);
|
|
//f:
|
|
ReplacePhiPred(cast<BasicBlock>(Translate(dst)),
|
|
cast<BasicBlock>(Translate(src)),bbCp);
|
|
CollapsePhi(cast<BasicBlock>(Translate(dst)), bbCp);
|
|
//g:
|
|
for(BasicBlock::iterator ib = dst->begin(), ie = dst->end(); ib != ie;
|
|
++ib)
|
|
if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
|
|
for(unsigned x = 0; x < phi->getNumIncomingValues(); ++x)
|
|
if(bbC == phi->getIncomingBlock(x)) {
|
|
phi->addIncoming(Translate(phi->getIncomingValue(x)), bbCp);
|
|
cast<PHINode>(Translate(phi))->addIncoming(phi->getIncomingValue(x),
|
|
bbC);
|
|
}
|
|
phi->removeIncomingValue(bbC);
|
|
}
|
|
}
|
|
|
|
bool ProfilerRS::runOnFunction(Function& F) {
|
|
if (!F.isDeclaration()) {
|
|
std::set<std::pair<BasicBlock*, BasicBlock*> > BackEdges;
|
|
RSProfilers& LI = getAnalysis<RSProfilers>();
|
|
|
|
getBackEdges(F, BackEdges);
|
|
Duplicate(F, LI);
|
|
//assume that stuff worked. now connect the duplicated basic blocks
|
|
//with the originals in such a way as to preserve ssa. yuk!
|
|
for (std::set<std::pair<BasicBlock*, BasicBlock*> >::iterator
|
|
ib = BackEdges.begin(), ie = BackEdges.end(); ib != ie; ++ib)
|
|
ProcessBackEdge(ib->first, ib->second, F);
|
|
|
|
//oh, and add the edge from the reg2mem created entry node to the
|
|
//duplicated second node
|
|
TerminatorInst* T = F.getEntryBlock().getTerminator();
|
|
ReplaceInstWithInst(T, BranchInst::Create(T->getSuccessor(0),
|
|
cast<BasicBlock>(
|
|
Translate(T->getSuccessor(0))),
|
|
ConstantInt::get(Type::Int1Ty,
|
|
true)));
|
|
|
|
//do whatever is needed now that the function is duplicated
|
|
c->PrepFunction(&F);
|
|
|
|
//add entry node to choice points
|
|
ChoicePoints.insert(&F.getEntryBlock());
|
|
|
|
for (std::set<BasicBlock*>::iterator
|
|
ii = ChoicePoints.begin(), ie = ChoicePoints.end(); ii != ie; ++ii)
|
|
c->ProcessChoicePoint(*ii);
|
|
|
|
ChoicePoints.clear();
|
|
TransCache.clear();
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ProfilerRS::doInitialization(Module &M) {
|
|
switch (RandomMethod) {
|
|
case GBV:
|
|
c = new GlobalRandomCounter(M, Type::Int32Ty, (1 << 14) - 1);
|
|
break;
|
|
case GBVO:
|
|
c = new GlobalRandomCounterOpt(M, Type::Int32Ty, (1 << 14) - 1);
|
|
break;
|
|
case HOSTCC:
|
|
c = new CycleCounter(M, (1 << 14) - 1);
|
|
break;
|
|
};
|
|
return true;
|
|
}
|
|
|
|
void ProfilerRS::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<RSProfilers>();
|
|
AU.addRequiredID(DemoteRegisterToMemoryID);
|
|
}
|
|
|
|
///////////////////////////////////////
|
|
// Utilities:
|
|
///////////////////////////////////////
|
|
static void ReplacePhiPred(BasicBlock* btarget,
|
|
BasicBlock* bold, BasicBlock* bnew) {
|
|
for(BasicBlock::iterator ib = btarget->begin(), ie = btarget->end();
|
|
ib != ie; ++ib)
|
|
if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
|
|
for(unsigned x = 0; x < phi->getNumIncomingValues(); ++x)
|
|
if(bold == phi->getIncomingBlock(x))
|
|
phi->setIncomingBlock(x, bnew);
|
|
}
|
|
}
|
|
|
|
static void CollapsePhi(BasicBlock* btarget, BasicBlock* bsrc) {
|
|
for(BasicBlock::iterator ib = btarget->begin(), ie = btarget->end();
|
|
ib != ie; ++ib)
|
|
if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
|
|
std::map<BasicBlock*, Value*> counter;
|
|
for(unsigned i = 0; i < phi->getNumIncomingValues(); ) {
|
|
if (counter[phi->getIncomingBlock(i)]) {
|
|
assert(phi->getIncomingValue(i) == counter[phi->getIncomingBlock(i)]);
|
|
phi->removeIncomingValue(i, false);
|
|
} else {
|
|
counter[phi->getIncomingBlock(i)] = phi->getIncomingValue(i);
|
|
++i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class T>
|
|
static void recBackEdge(BasicBlock* bb, T& BackEdges,
|
|
std::map<BasicBlock*, int>& color,
|
|
std::map<BasicBlock*, int>& depth,
|
|
std::map<BasicBlock*, int>& finish,
|
|
int& time)
|
|
{
|
|
color[bb] = 1;
|
|
++time;
|
|
depth[bb] = time;
|
|
TerminatorInst* t= bb->getTerminator();
|
|
for(unsigned i = 0; i < t->getNumSuccessors(); ++i) {
|
|
BasicBlock* bbnew = t->getSuccessor(i);
|
|
if (color[bbnew] == 0)
|
|
recBackEdge(bbnew, BackEdges, color, depth, finish, time);
|
|
else if (color[bbnew] == 1) {
|
|
BackEdges.insert(std::make_pair(bb, bbnew));
|
|
//NumBackEdges++;
|
|
}
|
|
}
|
|
color[bb] = 2;
|
|
++time;
|
|
finish[bb] = time;
|
|
}
|
|
|
|
|
|
|
|
//find the back edges and where they go to
|
|
template<class T>
|
|
static void getBackEdges(Function& F, T& BackEdges) {
|
|
std::map<BasicBlock*, int> color;
|
|
std::map<BasicBlock*, int> depth;
|
|
std::map<BasicBlock*, int> finish;
|
|
int time = 0;
|
|
recBackEdge(&F.getEntryBlock(), BackEdges, color, depth, finish, time);
|
|
DOUT << F.getName() << " " << BackEdges.size() << "\n";
|
|
}
|
|
|
|
|
|
//Creation functions
|
|
ModulePass* llvm::createNullProfilerRSPass() {
|
|
return new NullProfilerRS();
|
|
}
|
|
|
|
FunctionPass* llvm::createRSProfilingPass() {
|
|
return new ProfilerRS();
|
|
}
|