mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-04-02 15:51:54 +00:00

See bug for details: https://llvm.org/bugs/show_bug.cgi?id=25421 Some comparisons were incorrectly replaced with a constant value. llvm-svn: 252231
1332 lines
55 KiB
C++
1332 lines
55 KiB
C++
//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The ScalarEvolution class is an LLVM pass which can be used to analyze and
|
|
// categorize scalar expressions in loops. It specializes in recognizing
|
|
// general induction variables, representing them with the abstract and opaque
|
|
// SCEV class. Given this analysis, trip counts of loops and other important
|
|
// properties can be obtained.
|
|
//
|
|
// This analysis is primarily useful for induction variable substitution and
|
|
// strength reduction.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
|
|
#define LLVM_ANALYSIS_SCALAREVOLUTION_H
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include <map>
|
|
|
|
namespace llvm {
|
|
class APInt;
|
|
class AssumptionCache;
|
|
class Constant;
|
|
class ConstantInt;
|
|
class DominatorTree;
|
|
class Type;
|
|
class ScalarEvolution;
|
|
class DataLayout;
|
|
class TargetLibraryInfo;
|
|
class LLVMContext;
|
|
class Loop;
|
|
class LoopInfo;
|
|
class Operator;
|
|
class SCEV;
|
|
class SCEVAddRecExpr;
|
|
class SCEVConstant;
|
|
class SCEVExpander;
|
|
class SCEVPredicate;
|
|
class SCEVUnknown;
|
|
|
|
template <> struct FoldingSetTrait<SCEV>;
|
|
template <> struct FoldingSetTrait<SCEVPredicate>;
|
|
|
|
/// This class represents an analyzed expression in the program. These are
|
|
/// opaque objects that the client is not allowed to do much with directly.
|
|
///
|
|
class SCEV : public FoldingSetNode {
|
|
friend struct FoldingSetTrait<SCEV>;
|
|
|
|
/// A reference to an Interned FoldingSetNodeID for this node. The
|
|
/// ScalarEvolution's BumpPtrAllocator holds the data.
|
|
FoldingSetNodeIDRef FastID;
|
|
|
|
// The SCEV baseclass this node corresponds to
|
|
const unsigned short SCEVType;
|
|
|
|
protected:
|
|
/// This field is initialized to zero and may be used in subclasses to store
|
|
/// miscellaneous information.
|
|
unsigned short SubclassData;
|
|
|
|
private:
|
|
SCEV(const SCEV &) = delete;
|
|
void operator=(const SCEV &) = delete;
|
|
|
|
public:
|
|
/// NoWrapFlags are bitfield indices into SubclassData.
|
|
///
|
|
/// Add and Mul expressions may have no-unsigned-wrap <NUW> or
|
|
/// no-signed-wrap <NSW> properties, which are derived from the IR
|
|
/// operator. NSW is a misnomer that we use to mean no signed overflow or
|
|
/// underflow.
|
|
///
|
|
/// AddRec expressions may have a no-self-wraparound <NW> property if, in
|
|
/// the integer domain, abs(step) * max-iteration(loop) <=
|
|
/// unsigned-max(bitwidth). This means that the recurrence will never reach
|
|
/// its start value if the step is non-zero. Computing the same value on
|
|
/// each iteration is not considered wrapping, and recurrences with step = 0
|
|
/// are trivially <NW>. <NW> is independent of the sign of step and the
|
|
/// value the add recurrence starts with.
|
|
///
|
|
/// Note that NUW and NSW are also valid properties of a recurrence, and
|
|
/// either implies NW. For convenience, NW will be set for a recurrence
|
|
/// whenever either NUW or NSW are set.
|
|
enum NoWrapFlags { FlagAnyWrap = 0, // No guarantee.
|
|
FlagNW = (1 << 0), // No self-wrap.
|
|
FlagNUW = (1 << 1), // No unsigned wrap.
|
|
FlagNSW = (1 << 2), // No signed wrap.
|
|
NoWrapMask = (1 << 3) -1 };
|
|
|
|
explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
|
|
FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
|
|
|
|
unsigned getSCEVType() const { return SCEVType; }
|
|
|
|
/// Return the LLVM type of this SCEV expression.
|
|
///
|
|
Type *getType() const;
|
|
|
|
/// Return true if the expression is a constant zero.
|
|
///
|
|
bool isZero() const;
|
|
|
|
/// Return true if the expression is a constant one.
|
|
///
|
|
bool isOne() const;
|
|
|
|
/// Return true if the expression is a constant all-ones value.
|
|
///
|
|
bool isAllOnesValue() const;
|
|
|
|
/// Return true if the specified scev is negated, but not a constant.
|
|
bool isNonConstantNegative() const;
|
|
|
|
/// Print out the internal representation of this scalar to the specified
|
|
/// stream. This should really only be used for debugging purposes.
|
|
void print(raw_ostream &OS) const;
|
|
|
|
/// This method is used for debugging.
|
|
///
|
|
void dump() const;
|
|
};
|
|
|
|
// Specialize FoldingSetTrait for SCEV to avoid needing to compute
|
|
// temporary FoldingSetNodeID values.
|
|
template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
|
|
static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
|
|
ID = X.FastID;
|
|
}
|
|
static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
|
|
unsigned IDHash, FoldingSetNodeID &TempID) {
|
|
return ID == X.FastID;
|
|
}
|
|
static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
|
|
return X.FastID.ComputeHash();
|
|
}
|
|
};
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
|
|
S.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
/// An object of this class is returned by queries that could not be answered.
|
|
/// For example, if you ask for the number of iterations of a linked-list
|
|
/// traversal loop, you will get one of these. None of the standard SCEV
|
|
/// operations are valid on this class, it is just a marker.
|
|
struct SCEVCouldNotCompute : public SCEV {
|
|
SCEVCouldNotCompute();
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const SCEV *S);
|
|
};
|
|
|
|
/// SCEVPredicate - This class represents an assumption made using SCEV
|
|
/// expressions which can be checked at run-time.
|
|
class SCEVPredicate : public FoldingSetNode {
|
|
friend struct FoldingSetTrait<SCEVPredicate>;
|
|
|
|
/// A reference to an Interned FoldingSetNodeID for this node. The
|
|
/// ScalarEvolution's BumpPtrAllocator holds the data.
|
|
FoldingSetNodeIDRef FastID;
|
|
|
|
public:
|
|
enum SCEVPredicateKind { P_Union, P_Equal };
|
|
|
|
protected:
|
|
SCEVPredicateKind Kind;
|
|
|
|
public:
|
|
SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
|
|
|
|
virtual ~SCEVPredicate() {}
|
|
|
|
SCEVPredicateKind getKind() const { return Kind; }
|
|
|
|
/// \brief Returns the estimated complexity of this predicate.
|
|
/// This is roughly measured in the number of run-time checks required.
|
|
virtual unsigned getComplexity() { return 1; }
|
|
|
|
/// \brief Returns true if the predicate is always true. This means that no
|
|
/// assumptions were made and nothing needs to be checked at run-time.
|
|
virtual bool isAlwaysTrue() const = 0;
|
|
|
|
/// \brief Returns true if this predicate implies \p N.
|
|
virtual bool implies(const SCEVPredicate *N) const = 0;
|
|
|
|
/// \brief Prints a textual representation of this predicate with an
|
|
/// indentation of \p Depth.
|
|
virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
|
|
|
|
/// \brief Returns the SCEV to which this predicate applies, or nullptr
|
|
/// if this is a SCEVUnionPredicate.
|
|
virtual const SCEV *getExpr() const = 0;
|
|
};
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
|
|
P.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
// Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
|
|
// temporary FoldingSetNodeID values.
|
|
template <>
|
|
struct FoldingSetTrait<SCEVPredicate>
|
|
: DefaultFoldingSetTrait<SCEVPredicate> {
|
|
|
|
static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
|
|
ID = X.FastID;
|
|
}
|
|
|
|
static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
|
|
unsigned IDHash, FoldingSetNodeID &TempID) {
|
|
return ID == X.FastID;
|
|
}
|
|
static unsigned ComputeHash(const SCEVPredicate &X,
|
|
FoldingSetNodeID &TempID) {
|
|
return X.FastID.ComputeHash();
|
|
}
|
|
};
|
|
|
|
/// SCEVEqualPredicate - This class represents an assumption that two SCEV
|
|
/// expressions are equal, and this can be checked at run-time. We assume
|
|
/// that the left hand side is a SCEVUnknown and the right hand side a
|
|
/// constant.
|
|
class SCEVEqualPredicate : public SCEVPredicate {
|
|
/// We assume that LHS == RHS, where LHS is a SCEVUnknown and RHS a
|
|
/// constant.
|
|
const SCEVUnknown *LHS;
|
|
const SCEVConstant *RHS;
|
|
|
|
public:
|
|
SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEVUnknown *LHS,
|
|
const SCEVConstant *RHS);
|
|
|
|
/// Implementation of the SCEVPredicate interface
|
|
bool implies(const SCEVPredicate *N) const override;
|
|
void print(raw_ostream &OS, unsigned Depth = 0) const override;
|
|
bool isAlwaysTrue() const override;
|
|
const SCEV *getExpr() const override;
|
|
|
|
/// \brief Returns the left hand side of the equality.
|
|
const SCEVUnknown *getLHS() const { return LHS; }
|
|
|
|
/// \brief Returns the right hand side of the equality.
|
|
const SCEVConstant *getRHS() const { return RHS; }
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const SCEVPredicate *P) {
|
|
return P->getKind() == P_Equal;
|
|
}
|
|
};
|
|
|
|
/// SCEVUnionPredicate - This class represents a composition of other
|
|
/// SCEV predicates, and is the class that most clients will interact with.
|
|
/// This is equivalent to a logical "AND" of all the predicates in the union.
|
|
class SCEVUnionPredicate : public SCEVPredicate {
|
|
private:
|
|
typedef DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>
|
|
PredicateMap;
|
|
|
|
/// Vector with references to all predicates in this union.
|
|
SmallVector<const SCEVPredicate *, 16> Preds;
|
|
/// Maps SCEVs to predicates for quick look-ups.
|
|
PredicateMap SCEVToPreds;
|
|
|
|
public:
|
|
SCEVUnionPredicate();
|
|
|
|
const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
|
|
return Preds;
|
|
}
|
|
|
|
/// \brief Adds a predicate to this union.
|
|
void add(const SCEVPredicate *N);
|
|
|
|
/// \brief Returns a reference to a vector containing all predicates
|
|
/// which apply to \p Expr.
|
|
ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);
|
|
|
|
/// Implementation of the SCEVPredicate interface
|
|
bool isAlwaysTrue() const override;
|
|
bool implies(const SCEVPredicate *N) const override;
|
|
void print(raw_ostream &OS, unsigned Depth) const override;
|
|
const SCEV *getExpr() const override;
|
|
|
|
/// \brief We estimate the complexity of a union predicate as the size
|
|
/// number of predicates in the union.
|
|
unsigned getComplexity() override { return Preds.size(); }
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const SCEVPredicate *P) {
|
|
return P->getKind() == P_Union;
|
|
}
|
|
};
|
|
|
|
/// The main scalar evolution driver. Because client code (intentionally)
|
|
/// can't do much with the SCEV objects directly, they must ask this class
|
|
/// for services.
|
|
class ScalarEvolution {
|
|
public:
|
|
/// An enum describing the relationship between a SCEV and a loop.
|
|
enum LoopDisposition {
|
|
LoopVariant, ///< The SCEV is loop-variant (unknown).
|
|
LoopInvariant, ///< The SCEV is loop-invariant.
|
|
LoopComputable ///< The SCEV varies predictably with the loop.
|
|
};
|
|
|
|
/// An enum describing the relationship between a SCEV and a basic block.
|
|
enum BlockDisposition {
|
|
DoesNotDominateBlock, ///< The SCEV does not dominate the block.
|
|
DominatesBlock, ///< The SCEV dominates the block.
|
|
ProperlyDominatesBlock ///< The SCEV properly dominates the block.
|
|
};
|
|
|
|
/// Convenient NoWrapFlags manipulation that hides enum casts and is
|
|
/// visible in the ScalarEvolution name space.
|
|
static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
|
|
maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
|
|
return (SCEV::NoWrapFlags)(Flags & Mask);
|
|
}
|
|
static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
|
|
setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) {
|
|
return (SCEV::NoWrapFlags)(Flags | OnFlags);
|
|
}
|
|
static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
|
|
clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
|
|
return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
|
|
}
|
|
|
|
private:
|
|
/// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
|
|
/// Value is deleted.
|
|
class SCEVCallbackVH final : public CallbackVH {
|
|
ScalarEvolution *SE;
|
|
void deleted() override;
|
|
void allUsesReplacedWith(Value *New) override;
|
|
public:
|
|
SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
|
|
};
|
|
|
|
friend class SCEVCallbackVH;
|
|
friend class SCEVExpander;
|
|
friend class SCEVUnknown;
|
|
|
|
/// The function we are analyzing.
|
|
///
|
|
Function &F;
|
|
|
|
/// The target library information for the target we are targeting.
|
|
///
|
|
TargetLibraryInfo &TLI;
|
|
|
|
/// The tracker for @llvm.assume intrinsics in this function.
|
|
AssumptionCache &AC;
|
|
|
|
/// The dominator tree.
|
|
///
|
|
DominatorTree &DT;
|
|
|
|
/// The loop information for the function we are currently analyzing.
|
|
///
|
|
LoopInfo &LI;
|
|
|
|
/// This SCEV is used to represent unknown trip counts and things.
|
|
std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
|
|
|
|
/// The typedef for ValueExprMap.
|
|
///
|
|
typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
|
|
ValueExprMapType;
|
|
|
|
/// This is a cache of the values we have analyzed so far.
|
|
///
|
|
ValueExprMapType ValueExprMap;
|
|
|
|
/// Mark predicate values currently being processed by isImpliedCond.
|
|
DenseSet<Value*> PendingLoopPredicates;
|
|
|
|
/// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
|
|
/// conditions dominating the backedge of a loop.
|
|
bool WalkingBEDominatingConds;
|
|
|
|
/// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
|
|
/// predicate by splitting it into a set of independent predicates.
|
|
bool ProvingSplitPredicate;
|
|
|
|
/// Information about the number of loop iterations for which a loop exit's
|
|
/// branch condition evaluates to the not-taken path. This is a temporary
|
|
/// pair of exact and max expressions that are eventually summarized in
|
|
/// ExitNotTakenInfo and BackedgeTakenInfo.
|
|
struct ExitLimit {
|
|
const SCEV *Exact;
|
|
const SCEV *Max;
|
|
|
|
/*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
|
|
|
|
ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
|
|
|
|
/// Test whether this ExitLimit contains any computed information, or
|
|
/// whether it's all SCEVCouldNotCompute values.
|
|
bool hasAnyInfo() const {
|
|
return !isa<SCEVCouldNotCompute>(Exact) ||
|
|
!isa<SCEVCouldNotCompute>(Max);
|
|
}
|
|
};
|
|
|
|
/// Information about the number of times a particular loop exit may be
|
|
/// reached before exiting the loop.
|
|
struct ExitNotTakenInfo {
|
|
AssertingVH<BasicBlock> ExitingBlock;
|
|
const SCEV *ExactNotTaken;
|
|
PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
|
|
|
|
ExitNotTakenInfo() : ExitingBlock(nullptr), ExactNotTaken(nullptr) {}
|
|
|
|
/// Return true if all loop exits are computable.
|
|
bool isCompleteList() const {
|
|
return NextExit.getInt() == 0;
|
|
}
|
|
|
|
void setIncomplete() { NextExit.setInt(1); }
|
|
|
|
/// Return a pointer to the next exit's not-taken info.
|
|
ExitNotTakenInfo *getNextExit() const {
|
|
return NextExit.getPointer();
|
|
}
|
|
|
|
void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
|
|
};
|
|
|
|
/// Information about the backedge-taken count of a loop. This currently
|
|
/// includes an exact count and a maximum count.
|
|
///
|
|
class BackedgeTakenInfo {
|
|
/// A list of computable exits and their not-taken counts. Loops almost
|
|
/// never have more than one computable exit.
|
|
ExitNotTakenInfo ExitNotTaken;
|
|
|
|
/// An expression indicating the least maximum backedge-taken count of the
|
|
/// loop that is known, or a SCEVCouldNotCompute.
|
|
const SCEV *Max;
|
|
|
|
public:
|
|
BackedgeTakenInfo() : Max(nullptr) {}
|
|
|
|
/// Initialize BackedgeTakenInfo from a list of exact exit counts.
|
|
BackedgeTakenInfo(
|
|
SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
|
|
bool Complete, const SCEV *MaxCount);
|
|
|
|
/// Test whether this BackedgeTakenInfo contains any computed information,
|
|
/// or whether it's all SCEVCouldNotCompute values.
|
|
bool hasAnyInfo() const {
|
|
return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
|
|
}
|
|
|
|
/// Return an expression indicating the exact backedge-taken count of the
|
|
/// loop if it is known, or SCEVCouldNotCompute otherwise. This is the
|
|
/// number of times the loop header can be guaranteed to execute, minus
|
|
/// one.
|
|
const SCEV *getExact(ScalarEvolution *SE) const;
|
|
|
|
/// Return the number of times this loop exit may fall through to the back
|
|
/// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
|
|
/// this block before this number of iterations, but may exit via another
|
|
/// block.
|
|
const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
|
|
|
|
/// Get the max backedge taken count for the loop.
|
|
const SCEV *getMax(ScalarEvolution *SE) const;
|
|
|
|
/// Return true if any backedge taken count expressions refer to the given
|
|
/// subexpression.
|
|
bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
|
|
|
|
/// Invalidate this result and free associated memory.
|
|
void clear();
|
|
};
|
|
|
|
/// Cache the backedge-taken count of the loops for this function as they
|
|
/// are computed.
|
|
DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
|
|
|
|
/// This map contains entries for all of the PHI instructions that we
|
|
/// attempt to compute constant evolutions for. This allows us to avoid
|
|
/// potentially expensive recomputation of these properties. An instruction
|
|
/// maps to null if we are unable to compute its exit value.
|
|
DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
|
|
|
|
/// This map contains entries for all the expressions that we attempt to
|
|
/// compute getSCEVAtScope information for, which can be expensive in
|
|
/// extreme cases.
|
|
DenseMap<const SCEV *,
|
|
SmallVector<std::pair<const Loop *, const SCEV *>, 2> > ValuesAtScopes;
|
|
|
|
/// Memoized computeLoopDisposition results.
|
|
DenseMap<const SCEV *,
|
|
SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
|
|
LoopDispositions;
|
|
|
|
/// Compute a LoopDisposition value.
|
|
LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
|
|
|
|
/// Memoized computeBlockDisposition results.
|
|
DenseMap<
|
|
const SCEV *,
|
|
SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
|
|
BlockDispositions;
|
|
|
|
/// Compute a BlockDisposition value.
|
|
BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
|
|
|
|
/// Memoized results from getRange
|
|
DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
|
|
|
|
/// Memoized results from getRange
|
|
DenseMap<const SCEV *, ConstantRange> SignedRanges;
|
|
|
|
/// Used to parameterize getRange
|
|
enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
|
|
|
|
/// Set the memoized range for the given SCEV.
|
|
const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
|
|
const ConstantRange &CR) {
|
|
DenseMap<const SCEV *, ConstantRange> &Cache =
|
|
Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
|
|
|
|
std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
|
|
Cache.insert(std::make_pair(S, CR));
|
|
if (!Pair.second)
|
|
Pair.first->second = CR;
|
|
return Pair.first->second;
|
|
}
|
|
|
|
/// Determine the range for a particular SCEV.
|
|
ConstantRange getRange(const SCEV *S, RangeSignHint Hint);
|
|
|
|
/// We know that there is no SCEV for the specified value. Analyze the
|
|
/// expression.
|
|
const SCEV *createSCEV(Value *V);
|
|
|
|
/// Provide the special handling we need to analyze PHI SCEVs.
|
|
const SCEV *createNodeForPHI(PHINode *PN);
|
|
|
|
/// Helper function called from createNodeForPHI.
|
|
const SCEV *createAddRecFromPHI(PHINode *PN);
|
|
|
|
/// Helper function called from createNodeForPHI.
|
|
const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
|
|
|
|
/// Provide special handling for a select-like instruction (currently this
|
|
/// is either a select instruction or a phi node). \p I is the instruction
|
|
/// being processed, and it is assumed equivalent to "Cond ? TrueVal :
|
|
/// FalseVal".
|
|
const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
|
|
Value *TrueVal, Value *FalseVal);
|
|
|
|
/// Provide the special handling we need to analyze GEP SCEVs.
|
|
const SCEV *createNodeForGEP(GEPOperator *GEP);
|
|
|
|
/// Implementation code for getSCEVAtScope; called at most once for each
|
|
/// SCEV+Loop pair.
|
|
///
|
|
const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
|
|
|
|
/// This looks up computed SCEV values for all instructions that depend on
|
|
/// the given instruction and removes them from the ValueExprMap map if they
|
|
/// reference SymName. This is used during PHI resolution.
|
|
void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
|
|
|
|
/// Return the BackedgeTakenInfo for the given loop, lazily computing new
|
|
/// values if the loop hasn't been analyzed yet.
|
|
const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
|
|
|
|
/// Compute the number of times the specified loop will iterate.
|
|
BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L);
|
|
|
|
/// Compute the number of times the backedge of the specified loop will
|
|
/// execute if it exits via the specified block.
|
|
ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
|
|
|
|
/// Compute the number of times the backedge of the specified loop will
|
|
/// execute if its exit condition were a conditional branch of ExitCond,
|
|
/// TBB, and FBB.
|
|
ExitLimit computeExitLimitFromCond(const Loop *L,
|
|
Value *ExitCond,
|
|
BasicBlock *TBB,
|
|
BasicBlock *FBB,
|
|
bool IsSubExpr);
|
|
|
|
/// Compute the number of times the backedge of the specified loop will
|
|
/// execute if its exit condition were a conditional branch of the ICmpInst
|
|
/// ExitCond, TBB, and FBB.
|
|
ExitLimit computeExitLimitFromICmp(const Loop *L,
|
|
ICmpInst *ExitCond,
|
|
BasicBlock *TBB,
|
|
BasicBlock *FBB,
|
|
bool IsSubExpr);
|
|
|
|
/// Compute the number of times the backedge of the specified loop will
|
|
/// execute if its exit condition were a switch with a single exiting case
|
|
/// to ExitingBB.
|
|
ExitLimit
|
|
computeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch,
|
|
BasicBlock *ExitingBB, bool IsSubExpr);
|
|
|
|
/// Given an exit condition of 'icmp op load X, cst', try to see if we can
|
|
/// compute the backedge-taken count.
|
|
ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI,
|
|
Constant *RHS,
|
|
const Loop *L,
|
|
ICmpInst::Predicate p);
|
|
|
|
/// Compute the exit limit of a loop that is controlled by a
|
|
/// "(IV >> 1) != 0" type comparison. We cannot compute the exact trip
|
|
/// count in these cases (since SCEV has no way of expressing them), but we
|
|
/// can still sometimes compute an upper bound.
|
|
///
|
|
/// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
|
|
/// RHS`.
|
|
ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS,
|
|
const Loop *L,
|
|
ICmpInst::Predicate Pred);
|
|
|
|
/// If the loop is known to execute a constant number of times (the
|
|
/// condition evolves only from constants), try to evaluate a few iterations
|
|
/// of the loop until we get the exit condition gets a value of ExitWhen
|
|
/// (true or false). If we cannot evaluate the exit count of the loop,
|
|
/// return CouldNotCompute.
|
|
const SCEV *computeExitCountExhaustively(const Loop *L,
|
|
Value *Cond,
|
|
bool ExitWhen);
|
|
|
|
/// Return the number of times an exit condition comparing the specified
|
|
/// value to zero will execute. If not computable, return CouldNotCompute.
|
|
ExitLimit HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr);
|
|
|
|
/// Return the number of times an exit condition checking the specified
|
|
/// value for nonzero will execute. If not computable, return
|
|
/// CouldNotCompute.
|
|
ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
|
|
|
|
/// Return the number of times an exit condition containing the specified
|
|
/// less-than comparison will execute. If not computable, return
|
|
/// CouldNotCompute. isSigned specifies whether the less-than is signed.
|
|
ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
|
|
const Loop *L, bool isSigned, bool IsSubExpr);
|
|
ExitLimit HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
|
|
const Loop *L, bool isSigned, bool IsSubExpr);
|
|
|
|
/// Return a predecessor of BB (which may not be an immediate predecessor)
|
|
/// which has exactly one successor from which BB is reachable, or null if
|
|
/// no such block is found.
|
|
std::pair<BasicBlock *, BasicBlock *>
|
|
getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
|
|
|
|
/// Test whether the condition described by Pred, LHS, and RHS is true
|
|
/// whenever the given FoundCondValue value evaluates to true.
|
|
bool isImpliedCond(ICmpInst::Predicate Pred,
|
|
const SCEV *LHS, const SCEV *RHS,
|
|
Value *FoundCondValue,
|
|
bool Inverse);
|
|
|
|
/// Test whether the condition described by Pred, LHS, and RHS is true
|
|
/// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
|
|
/// true.
|
|
bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
|
|
const SCEV *RHS, ICmpInst::Predicate FoundPred,
|
|
const SCEV *FoundLHS, const SCEV *FoundRHS);
|
|
|
|
/// Test whether the condition described by Pred, LHS, and RHS is true
|
|
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
|
|
/// true.
|
|
bool isImpliedCondOperands(ICmpInst::Predicate Pred,
|
|
const SCEV *LHS, const SCEV *RHS,
|
|
const SCEV *FoundLHS, const SCEV *FoundRHS);
|
|
|
|
/// Test whether the condition described by Pred, LHS, and RHS is true
|
|
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
|
|
/// true.
|
|
bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
|
|
const SCEV *LHS, const SCEV *RHS,
|
|
const SCEV *FoundLHS,
|
|
const SCEV *FoundRHS);
|
|
|
|
/// Test whether the condition described by Pred, LHS, and RHS is true
|
|
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
|
|
/// true. Utility function used by isImpliedCondOperands.
|
|
bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
|
|
const SCEV *LHS, const SCEV *RHS,
|
|
const SCEV *FoundLHS,
|
|
const SCEV *FoundRHS);
|
|
|
|
/// Test whether the condition described by Pred, LHS, and RHS is true
|
|
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
|
|
/// true.
|
|
///
|
|
/// This routine tries to rule out certain kinds of integer overflow, and
|
|
/// then tries to reason about arithmetic properties of the predicates.
|
|
bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
|
|
const SCEV *LHS, const SCEV *RHS,
|
|
const SCEV *FoundLHS,
|
|
const SCEV *FoundRHS);
|
|
|
|
/// If we know that the specified Phi is in the header of its containing
|
|
/// loop, we know the loop executes a constant number of times, and the PHI
|
|
/// node is just a recurrence involving constants, fold it.
|
|
Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
|
|
const Loop *L);
|
|
|
|
/// Test if the given expression is known to satisfy the condition described
|
|
/// by Pred and the known constant ranges of LHS and RHS.
|
|
///
|
|
bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
|
|
const SCEV *LHS, const SCEV *RHS);
|
|
|
|
/// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
|
|
/// prove them individually.
|
|
bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
|
|
const SCEV *RHS);
|
|
|
|
/// Try to match the Expr as "(L + R)<Flags>".
|
|
bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
|
|
SCEV::NoWrapFlags &Flags);
|
|
|
|
/// Return true if More == (Less + C), where C is a constant. This is
|
|
/// intended to be used as a cheaper substitute for full SCEV subtraction.
|
|
bool computeConstantDifference(const SCEV *Less, const SCEV *More,
|
|
APInt &C);
|
|
|
|
/// Drop memoized information computed for S.
|
|
void forgetMemoizedResults(const SCEV *S);
|
|
|
|
/// Return an existing SCEV for V if there is one, otherwise return nullptr.
|
|
const SCEV *getExistingSCEV(Value *V);
|
|
|
|
/// Return false iff given SCEV contains a SCEVUnknown with NULL value-
|
|
/// pointer.
|
|
bool checkValidity(const SCEV *S) const;
|
|
|
|
/// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
|
|
/// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}. This is
|
|
/// equivalent to proving no signed (resp. unsigned) wrap in
|
|
/// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
|
|
/// (resp. `SCEVZeroExtendExpr`).
|
|
///
|
|
template<typename ExtendOpTy>
|
|
bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
|
|
const Loop *L);
|
|
|
|
bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
|
|
ICmpInst::Predicate Pred, bool &Increasing);
|
|
|
|
/// Return true if, for all loop invariant X, the predicate "LHS `Pred` X"
|
|
/// is monotonically increasing or decreasing. In the former case set
|
|
/// `Increasing` to true and in the latter case set `Increasing` to false.
|
|
///
|
|
/// A predicate is said to be monotonically increasing if may go from being
|
|
/// false to being true as the loop iterates, but never the other way
|
|
/// around. A predicate is said to be monotonically decreasing if may go
|
|
/// from being true to being false as the loop iterates, but never the other
|
|
/// way around.
|
|
bool isMonotonicPredicate(const SCEVAddRecExpr *LHS,
|
|
ICmpInst::Predicate Pred, bool &Increasing);
|
|
|
|
// Return SCEV no-wrap flags that can be proven based on reasoning
|
|
// about how poison produced from no-wrap flags on this value
|
|
// (e.g. a nuw add) would trigger undefined behavior on overflow.
|
|
SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
|
|
|
|
public:
|
|
ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
|
|
DominatorTree &DT, LoopInfo &LI);
|
|
~ScalarEvolution();
|
|
ScalarEvolution(ScalarEvolution &&Arg);
|
|
|
|
LLVMContext &getContext() const { return F.getContext(); }
|
|
|
|
/// Test if values of the given type are analyzable within the SCEV
|
|
/// framework. This primarily includes integer types, and it can optionally
|
|
/// include pointer types if the ScalarEvolution class has access to
|
|
/// target-specific information.
|
|
bool isSCEVable(Type *Ty) const;
|
|
|
|
/// Return the size in bits of the specified type, for which isSCEVable must
|
|
/// return true.
|
|
uint64_t getTypeSizeInBits(Type *Ty) const;
|
|
|
|
/// Return a type with the same bitwidth as the given type and which
|
|
/// represents how SCEV will treat the given type, for which isSCEVable must
|
|
/// return true. For pointer types, this is the pointer-sized integer type.
|
|
Type *getEffectiveSCEVType(Type *Ty) const;
|
|
|
|
/// Return a SCEV expression for the full generality of the specified
|
|
/// expression.
|
|
const SCEV *getSCEV(Value *V);
|
|
|
|
const SCEV *getConstant(ConstantInt *V);
|
|
const SCEV *getConstant(const APInt& Val);
|
|
const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
|
|
const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
|
|
const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
|
|
const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
|
|
const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
|
|
const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
|
|
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
|
|
const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
|
|
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
|
|
SmallVector<const SCEV *, 2> Ops;
|
|
Ops.push_back(LHS);
|
|
Ops.push_back(RHS);
|
|
return getAddExpr(Ops, Flags);
|
|
}
|
|
const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
|
|
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
|
|
SmallVector<const SCEV *, 3> Ops;
|
|
Ops.push_back(Op0);
|
|
Ops.push_back(Op1);
|
|
Ops.push_back(Op2);
|
|
return getAddExpr(Ops, Flags);
|
|
}
|
|
const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
|
|
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
|
|
const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
|
|
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
|
|
{
|
|
SmallVector<const SCEV *, 2> Ops;
|
|
Ops.push_back(LHS);
|
|
Ops.push_back(RHS);
|
|
return getMulExpr(Ops, Flags);
|
|
}
|
|
const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
|
|
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
|
|
SmallVector<const SCEV *, 3> Ops;
|
|
Ops.push_back(Op0);
|
|
Ops.push_back(Op1);
|
|
Ops.push_back(Op2);
|
|
return getMulExpr(Ops, Flags);
|
|
}
|
|
const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
|
|
const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
|
|
const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
|
|
const Loop *L, SCEV::NoWrapFlags Flags);
|
|
const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
|
|
const Loop *L, SCEV::NoWrapFlags Flags);
|
|
const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
|
|
const Loop *L, SCEV::NoWrapFlags Flags) {
|
|
SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
|
|
return getAddRecExpr(NewOp, L, Flags);
|
|
}
|
|
/// \brief Returns an expression for a GEP
|
|
///
|
|
/// \p PointeeType The type used as the basis for the pointer arithmetics
|
|
/// \p BaseExpr The expression for the pointer operand.
|
|
/// \p IndexExprs The expressions for the indices.
|
|
/// \p InBounds Whether the GEP is in bounds.
|
|
const SCEV *getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
|
|
const SmallVectorImpl<const SCEV *> &IndexExprs,
|
|
bool InBounds = false);
|
|
const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
|
|
const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
|
|
const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
|
|
const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
|
|
const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
|
|
const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
|
|
const SCEV *getUnknown(Value *V);
|
|
const SCEV *getCouldNotCompute();
|
|
|
|
/// \brief Return a SCEV for the constant 0 of a specific type.
|
|
const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
|
|
|
|
/// \brief Return a SCEV for the constant 1 of a specific type.
|
|
const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
|
|
|
|
/// Return an expression for sizeof AllocTy that is type IntTy
|
|
///
|
|
const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
|
|
|
|
/// Return an expression for offsetof on the given field with type IntTy
|
|
///
|
|
const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
|
|
|
|
/// Return the SCEV object corresponding to -V.
|
|
///
|
|
const SCEV *getNegativeSCEV(const SCEV *V,
|
|
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
|
|
|
|
/// Return the SCEV object corresponding to ~V.
|
|
///
|
|
const SCEV *getNotSCEV(const SCEV *V);
|
|
|
|
/// Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
|
|
const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
|
|
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
|
|
|
|
/// Return a SCEV corresponding to a conversion of the input value to the
|
|
/// specified type. If the type must be extended, it is zero extended.
|
|
const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
|
|
|
|
/// Return a SCEV corresponding to a conversion of the input value to the
|
|
/// specified type. If the type must be extended, it is sign extended.
|
|
const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
|
|
|
|
/// Return a SCEV corresponding to a conversion of the input value to the
|
|
/// specified type. If the type must be extended, it is zero extended. The
|
|
/// conversion must not be narrowing.
|
|
const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
|
|
|
|
/// Return a SCEV corresponding to a conversion of the input value to the
|
|
/// specified type. If the type must be extended, it is sign extended. The
|
|
/// conversion must not be narrowing.
|
|
const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
|
|
|
|
/// Return a SCEV corresponding to a conversion of the input value to the
|
|
/// specified type. If the type must be extended, it is extended with
|
|
/// unspecified bits. The conversion must not be narrowing.
|
|
const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
|
|
|
|
/// Return a SCEV corresponding to a conversion of the input value to the
|
|
/// specified type. The conversion must not be widening.
|
|
const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
|
|
|
|
/// Promote the operands to the wider of the types using zero-extension, and
|
|
/// then perform a umax operation with them.
|
|
const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
|
|
const SCEV *RHS);
|
|
|
|
/// Promote the operands to the wider of the types using zero-extension, and
|
|
/// then perform a umin operation with them.
|
|
const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
|
|
const SCEV *RHS);
|
|
|
|
/// Transitively follow the chain of pointer-type operands until reaching a
|
|
/// SCEV that does not have a single pointer operand. This returns a
|
|
/// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
|
|
/// cases do exist.
|
|
const SCEV *getPointerBase(const SCEV *V);
|
|
|
|
/// Return a SCEV expression for the specified value at the specified scope
|
|
/// in the program. The L value specifies a loop nest to evaluate the
|
|
/// expression at, where null is the top-level or a specified loop is
|
|
/// immediately inside of the loop.
|
|
///
|
|
/// This method can be used to compute the exit value for a variable defined
|
|
/// in a loop by querying what the value will hold in the parent loop.
|
|
///
|
|
/// In the case that a relevant loop exit value cannot be computed, the
|
|
/// original value V is returned.
|
|
const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
|
|
|
|
/// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
|
|
const SCEV *getSCEVAtScope(Value *V, const Loop *L);
|
|
|
|
/// Test whether entry to the loop is protected by a conditional between LHS
|
|
/// and RHS. This is used to help avoid max expressions in loop trip
|
|
/// counts, and to eliminate casts.
|
|
bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
|
|
const SCEV *LHS, const SCEV *RHS);
|
|
|
|
/// Test whether the backedge of the loop is protected by a conditional
|
|
/// between LHS and RHS. This is used to to eliminate casts.
|
|
bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
|
|
const SCEV *LHS, const SCEV *RHS);
|
|
|
|
/// \brief Returns the maximum trip count of the loop if it is a single-exit
|
|
/// loop and we can compute a small maximum for that loop.
|
|
///
|
|
/// Implemented in terms of the \c getSmallConstantTripCount overload with
|
|
/// the single exiting block passed to it. See that routine for details.
|
|
unsigned getSmallConstantTripCount(Loop *L);
|
|
|
|
/// Returns the maximum trip count of this loop as a normal unsigned
|
|
/// value. Returns 0 if the trip count is unknown or not constant. This
|
|
/// "trip count" assumes that control exits via ExitingBlock. More
|
|
/// precisely, it is the number of times that control may reach ExitingBlock
|
|
/// before taking the branch. For loops with multiple exits, it may not be
|
|
/// the number times that the loop header executes if the loop exits
|
|
/// prematurely via another branch.
|
|
unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
|
|
|
|
/// \brief Returns the largest constant divisor of the trip count of the
|
|
/// loop if it is a single-exit loop and we can compute a small maximum for
|
|
/// that loop.
|
|
///
|
|
/// Implemented in terms of the \c getSmallConstantTripMultiple overload with
|
|
/// the single exiting block passed to it. See that routine for details.
|
|
unsigned getSmallConstantTripMultiple(Loop *L);
|
|
|
|
/// Returns the largest constant divisor of the trip count of this loop as a
|
|
/// normal unsigned value, if possible. This means that the actual trip
|
|
/// count is always a multiple of the returned value (don't forget the trip
|
|
/// count could very well be zero as well!). As explained in the comments
|
|
/// for getSmallConstantTripCount, this assumes that control exits the loop
|
|
/// via ExitingBlock.
|
|
unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
|
|
|
|
/// Get the expression for the number of loop iterations for which this loop
|
|
/// is guaranteed not to exit via ExitingBlock. Otherwise return
|
|
/// SCEVCouldNotCompute.
|
|
const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
|
|
|
|
/// If the specified loop has a predictable backedge-taken count, return it,
|
|
/// otherwise return a SCEVCouldNotCompute object. The backedge-taken count
|
|
/// is the number of times the loop header will be branched to from within
|
|
/// the loop. This is one less than the trip count of the loop, since it
|
|
/// doesn't count the first iteration, when the header is branched to from
|
|
/// outside the loop.
|
|
///
|
|
/// Note that it is not valid to call this method on a loop without a
|
|
/// loop-invariant backedge-taken count (see
|
|
/// hasLoopInvariantBackedgeTakenCount).
|
|
///
|
|
const SCEV *getBackedgeTakenCount(const Loop *L);
|
|
|
|
/// Similar to getBackedgeTakenCount, except return the least SCEV value
|
|
/// that is known never to be less than the actual backedge taken count.
|
|
const SCEV *getMaxBackedgeTakenCount(const Loop *L);
|
|
|
|
/// Return true if the specified loop has an analyzable loop-invariant
|
|
/// backedge-taken count.
|
|
bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
|
|
|
|
/// This method should be called by the client when it has changed a loop in
|
|
/// a way that may effect ScalarEvolution's ability to compute a trip count,
|
|
/// or if the loop is deleted. This call is potentially expensive for large
|
|
/// loop bodies.
|
|
void forgetLoop(const Loop *L);
|
|
|
|
/// This method should be called by the client when it has changed a value
|
|
/// in a way that may effect its value, or which may disconnect it from a
|
|
/// def-use chain linking it to a loop.
|
|
void forgetValue(Value *V);
|
|
|
|
/// \brief Called when the client has changed the disposition of values in
|
|
/// this loop.
|
|
///
|
|
/// We don't have a way to invalidate per-loop dispositions. Clear and
|
|
/// recompute is simpler.
|
|
void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
|
|
|
|
/// Determine the minimum number of zero bits that S is guaranteed to end in
|
|
/// (at every loop iteration). It is, at the same time, the minimum number
|
|
/// of times S is divisible by 2. For example, given {4,+,8} it returns 2.
|
|
/// If S is guaranteed to be 0, it returns the bitwidth of S.
|
|
uint32_t GetMinTrailingZeros(const SCEV *S);
|
|
|
|
/// Determine the unsigned range for a particular SCEV.
|
|
///
|
|
ConstantRange getUnsignedRange(const SCEV *S) {
|
|
return getRange(S, HINT_RANGE_UNSIGNED);
|
|
}
|
|
|
|
/// Determine the signed range for a particular SCEV.
|
|
///
|
|
ConstantRange getSignedRange(const SCEV *S) {
|
|
return getRange(S, HINT_RANGE_SIGNED);
|
|
}
|
|
|
|
/// Test if the given expression is known to be negative.
|
|
///
|
|
bool isKnownNegative(const SCEV *S);
|
|
|
|
/// Test if the given expression is known to be positive.
|
|
///
|
|
bool isKnownPositive(const SCEV *S);
|
|
|
|
/// Test if the given expression is known to be non-negative.
|
|
///
|
|
bool isKnownNonNegative(const SCEV *S);
|
|
|
|
/// Test if the given expression is known to be non-positive.
|
|
///
|
|
bool isKnownNonPositive(const SCEV *S);
|
|
|
|
/// Test if the given expression is known to be non-zero.
|
|
///
|
|
bool isKnownNonZero(const SCEV *S);
|
|
|
|
/// Test if the given expression is known to satisfy the condition described
|
|
/// by Pred, LHS, and RHS.
|
|
///
|
|
bool isKnownPredicate(ICmpInst::Predicate Pred,
|
|
const SCEV *LHS, const SCEV *RHS);
|
|
|
|
/// Return true if the result of the predicate LHS `Pred` RHS is loop
|
|
/// invariant with respect to L. Set InvariantPred, InvariantLHS and
|
|
/// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the
|
|
/// loop invariant form of LHS `Pred` RHS.
|
|
bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
|
|
const SCEV *RHS, const Loop *L,
|
|
ICmpInst::Predicate &InvariantPred,
|
|
const SCEV *&InvariantLHS,
|
|
const SCEV *&InvariantRHS);
|
|
|
|
/// Simplify LHS and RHS in a comparison with predicate Pred. Return true
|
|
/// iff any changes were made. If the operands are provably equal or
|
|
/// unequal, LHS and RHS are set to the same value and Pred is set to either
|
|
/// ICMP_EQ or ICMP_NE.
|
|
///
|
|
bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
|
|
const SCEV *&LHS,
|
|
const SCEV *&RHS,
|
|
unsigned Depth = 0);
|
|
|
|
/// Return the "disposition" of the given SCEV with respect to the given
|
|
/// loop.
|
|
LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
|
|
|
|
/// Return true if the value of the given SCEV is unchanging in the
|
|
/// specified loop.
|
|
bool isLoopInvariant(const SCEV *S, const Loop *L);
|
|
|
|
/// Return true if the given SCEV changes value in a known way in the
|
|
/// specified loop. This property being true implies that the value is
|
|
/// variant in the loop AND that we can emit an expression to compute the
|
|
/// value of the expression at any particular loop iteration.
|
|
bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
|
|
|
|
/// Return the "disposition" of the given SCEV with respect to the given
|
|
/// block.
|
|
BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
|
|
|
|
/// Return true if elements that makes up the given SCEV dominate the
|
|
/// specified basic block.
|
|
bool dominates(const SCEV *S, const BasicBlock *BB);
|
|
|
|
/// Return true if elements that makes up the given SCEV properly dominate
|
|
/// the specified basic block.
|
|
bool properlyDominates(const SCEV *S, const BasicBlock *BB);
|
|
|
|
/// Test whether the given SCEV has Op as a direct or indirect operand.
|
|
bool hasOperand(const SCEV *S, const SCEV *Op) const;
|
|
|
|
/// Return the size of an element read or written by Inst.
|
|
const SCEV *getElementSize(Instruction *Inst);
|
|
|
|
/// Compute the array dimensions Sizes from the set of Terms extracted from
|
|
/// the memory access function of this SCEVAddRecExpr.
|
|
void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
|
|
SmallVectorImpl<const SCEV *> &Sizes,
|
|
const SCEV *ElementSize) const;
|
|
|
|
void print(raw_ostream &OS) const;
|
|
void verify() const;
|
|
|
|
/// Collect parametric terms occurring in step expressions.
|
|
void collectParametricTerms(const SCEV *Expr,
|
|
SmallVectorImpl<const SCEV *> &Terms);
|
|
|
|
|
|
|
|
/// Return in Subscripts the access functions for each dimension in Sizes.
|
|
void computeAccessFunctions(const SCEV *Expr,
|
|
SmallVectorImpl<const SCEV *> &Subscripts,
|
|
SmallVectorImpl<const SCEV *> &Sizes);
|
|
|
|
/// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
|
|
/// subscripts and sizes of an array access.
|
|
///
|
|
/// The delinearization is a 3 step process: the first two steps compute the
|
|
/// sizes of each subscript and the third step computes the access functions
|
|
/// for the delinearized array:
|
|
///
|
|
/// 1. Find the terms in the step functions
|
|
/// 2. Compute the array size
|
|
/// 3. Compute the access function: divide the SCEV by the array size
|
|
/// starting with the innermost dimensions found in step 2. The Quotient
|
|
/// is the SCEV to be divided in the next step of the recursion. The
|
|
/// Remainder is the subscript of the innermost dimension. Loop over all
|
|
/// array dimensions computed in step 2.
|
|
///
|
|
/// To compute a uniform array size for several memory accesses to the same
|
|
/// object, one can collect in step 1 all the step terms for all the memory
|
|
/// accesses, and compute in step 2 a unique array shape. This guarantees
|
|
/// that the array shape will be the same across all memory accesses.
|
|
///
|
|
/// FIXME: We could derive the result of steps 1 and 2 from a description of
|
|
/// the array shape given in metadata.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// A[][n][m]
|
|
///
|
|
/// for i
|
|
/// for j
|
|
/// for k
|
|
/// A[j+k][2i][5i] =
|
|
///
|
|
/// The initial SCEV:
|
|
///
|
|
/// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
|
|
///
|
|
/// 1. Find the different terms in the step functions:
|
|
/// -> [2*m, 5, n*m, n*m]
|
|
///
|
|
/// 2. Compute the array size: sort and unique them
|
|
/// -> [n*m, 2*m, 5]
|
|
/// find the GCD of all the terms = 1
|
|
/// divide by the GCD and erase constant terms
|
|
/// -> [n*m, 2*m]
|
|
/// GCD = m
|
|
/// divide by GCD -> [n, 2]
|
|
/// remove constant terms
|
|
/// -> [n]
|
|
/// size of the array is A[unknown][n][m]
|
|
///
|
|
/// 3. Compute the access function
|
|
/// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
|
|
/// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
|
|
/// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
|
|
/// The remainder is the subscript of the innermost array dimension: [5i].
|
|
///
|
|
/// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
|
|
/// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
|
|
/// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
|
|
/// The Remainder is the subscript of the next array dimension: [2i].
|
|
///
|
|
/// The subscript of the outermost dimension is the Quotient: [j+k].
|
|
///
|
|
/// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
|
|
void delinearize(const SCEV *Expr,
|
|
SmallVectorImpl<const SCEV *> &Subscripts,
|
|
SmallVectorImpl<const SCEV *> &Sizes,
|
|
const SCEV *ElementSize);
|
|
|
|
/// Return the DataLayout associated with the module this SCEV instance is
|
|
/// operating on.
|
|
const DataLayout &getDataLayout() const {
|
|
return F.getParent()->getDataLayout();
|
|
}
|
|
|
|
const SCEVPredicate *getEqualPredicate(const SCEVUnknown *LHS,
|
|
const SCEVConstant *RHS);
|
|
|
|
/// Re-writes the SCEV according to the Predicates in \p Preds.
|
|
const SCEV *rewriteUsingPredicate(const SCEV *Scev, SCEVUnionPredicate &A);
|
|
|
|
private:
|
|
/// Compute the backedge taken count knowing the interval difference, the
|
|
/// stride and presence of the equality in the comparison.
|
|
const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
|
|
bool Equality);
|
|
|
|
/// Verify if an linear IV with positive stride can overflow when in a
|
|
/// less-than comparison, knowing the invariant term of the comparison,
|
|
/// the stride and the knowledge of NSW/NUW flags on the recurrence.
|
|
bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
|
|
bool IsSigned, bool NoWrap);
|
|
|
|
/// Verify if an linear IV with negative stride can overflow when in a
|
|
/// greater-than comparison, knowing the invariant term of the comparison,
|
|
/// the stride and the knowledge of NSW/NUW flags on the recurrence.
|
|
bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
|
|
bool IsSigned, bool NoWrap);
|
|
|
|
private:
|
|
FoldingSet<SCEV> UniqueSCEVs;
|
|
FoldingSet<SCEVPredicate> UniquePreds;
|
|
BumpPtrAllocator SCEVAllocator;
|
|
|
|
/// The head of a linked list of all SCEVUnknown values that have been
|
|
/// allocated. This is used by releaseMemory to locate them all and call
|
|
/// their destructors.
|
|
SCEVUnknown *FirstUnknown;
|
|
};
|
|
|
|
/// \brief Analysis pass that exposes the \c ScalarEvolution for a function.
|
|
class ScalarEvolutionAnalysis {
|
|
static char PassID;
|
|
|
|
public:
|
|
typedef ScalarEvolution Result;
|
|
|
|
/// \brief Opaque, unique identifier for this analysis pass.
|
|
static void *ID() { return (void *)&PassID; }
|
|
|
|
/// \brief Provide a name for the analysis for debugging and logging.
|
|
static StringRef name() { return "ScalarEvolutionAnalysis"; }
|
|
|
|
ScalarEvolution run(Function &F, AnalysisManager<Function> *AM);
|
|
};
|
|
|
|
/// \brief Printer pass for the \c ScalarEvolutionAnalysis results.
|
|
class ScalarEvolutionPrinterPass {
|
|
raw_ostream &OS;
|
|
|
|
public:
|
|
explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
|
|
PreservedAnalyses run(Function &F, AnalysisManager<Function> *AM);
|
|
|
|
static StringRef name() { return "ScalarEvolutionPrinterPass"; }
|
|
};
|
|
|
|
class ScalarEvolutionWrapperPass : public FunctionPass {
|
|
std::unique_ptr<ScalarEvolution> SE;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
ScalarEvolutionWrapperPass();
|
|
|
|
ScalarEvolution &getSE() { return *SE; }
|
|
const ScalarEvolution &getSE() const { return *SE; }
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
void releaseMemory() override;
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
void print(raw_ostream &OS, const Module * = nullptr) const override;
|
|
void verifyAnalysis() const override;
|
|
};
|
|
}
|
|
|
|
#endif
|