llvm-mirror/lib/Target/AMDGPU/SILowerControlFlow.cpp
Matt Arsenault c6f20cb624 AMDGPU: Minor adjustment to r274817
The commit message is inaccurate, modifiesRegister
will check for partial defs of exec.

We currently don't ever emit partial defs of exec,
so it doesn't really matter.

llvm-svn: 274886
2016-07-08 17:06:48 +00:00

763 lines
24 KiB
C++

//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief This pass lowers the pseudo control flow instructions to real
/// machine instructions.
///
/// All control flow is handled using predicated instructions and
/// a predicate stack. Each Scalar ALU controls the operations of 64 Vector
/// ALUs. The Scalar ALU can update the predicate for any of the Vector ALUs
/// by writting to the 64-bit EXEC register (each bit corresponds to a
/// single vector ALU). Typically, for predicates, a vector ALU will write
/// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each
/// Vector ALU) and then the ScalarALU will AND the VCC register with the
/// EXEC to update the predicates.
///
/// For example:
/// %VCC = V_CMP_GT_F32 %VGPR1, %VGPR2
/// %SGPR0 = SI_IF %VCC
/// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0
/// %SGPR0 = SI_ELSE %SGPR0
/// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR0
/// SI_END_CF %SGPR0
///
/// becomes:
///
/// %SGPR0 = S_AND_SAVEEXEC_B64 %VCC // Save and update the exec mask
/// %SGPR0 = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask
/// S_CBRANCH_EXECZ label0 // This instruction is an optional
/// // optimization which allows us to
/// // branch if all the bits of
/// // EXEC are zero.
/// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 // Do the IF block of the branch
///
/// label0:
/// %SGPR0 = S_OR_SAVEEXEC_B64 %EXEC // Restore the exec mask for the Then block
/// %EXEC = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask
/// S_BRANCH_EXECZ label1 // Use our branch optimization
/// // instruction again.
/// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR // Do the THEN block
/// label1:
/// %EXEC = S_OR_B64 %EXEC, %SGPR0 // Re-enable saved exec mask bits
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Constants.h"
using namespace llvm;
#define DEBUG_TYPE "si-lower-control-flow"
namespace {
class SILowerControlFlow : public MachineFunctionPass {
private:
static const unsigned SkipThreshold = 12;
const SIRegisterInfo *TRI;
const SIInstrInfo *TII;
bool shouldSkip(MachineBasicBlock *From, MachineBasicBlock *To);
void Skip(MachineInstr &From, MachineOperand &To);
void SkipIfDead(MachineInstr &MI);
void If(MachineInstr &MI);
void Else(MachineInstr &MI, bool ExecModified);
void Break(MachineInstr &MI);
void IfBreak(MachineInstr &MI);
void ElseBreak(MachineInstr &MI);
void Loop(MachineInstr &MI);
void EndCf(MachineInstr &MI);
void Kill(MachineInstr &MI);
void Branch(MachineInstr &MI);
void splitBlockLiveIns(const MachineBasicBlock &MBB,
const MachineInstr &MI,
MachineBasicBlock &LoopBB,
MachineBasicBlock &RemainderBB,
unsigned SaveReg,
const MachineOperand &IdxReg);
void emitLoadM0FromVGPRLoop(MachineBasicBlock &LoopBB, DebugLoc DL,
MachineInstr *MovRel,
const MachineOperand &IdxReg,
int Offset);
bool loadM0(MachineInstr &MI, MachineInstr *MovRel, int Offset = 0);
std::pair<unsigned, int> computeIndirectRegAndOffset(unsigned VecReg,
int Offset) const;
bool indirectSrc(MachineInstr &MI);
bool indirectDst(MachineInstr &MI);
public:
static char ID;
SILowerControlFlow() :
MachineFunctionPass(ID), TRI(nullptr), TII(nullptr) { }
bool runOnMachineFunction(MachineFunction &MF) override;
const char *getPassName() const override {
return "SI Lower control flow pseudo instructions";
}
};
} // End anonymous namespace
char SILowerControlFlow::ID = 0;
INITIALIZE_PASS(SILowerControlFlow, DEBUG_TYPE,
"SI lower control flow", false, false)
char &llvm::SILowerControlFlowPassID = SILowerControlFlow::ID;
FunctionPass *llvm::createSILowerControlFlowPass() {
return new SILowerControlFlow();
}
static bool opcodeEmitsNoInsts(unsigned Opc) {
switch (Opc) {
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::KILL:
case TargetOpcode::BUNDLE:
case TargetOpcode::CFI_INSTRUCTION:
case TargetOpcode::EH_LABEL:
case TargetOpcode::GC_LABEL:
case TargetOpcode::DBG_VALUE:
return true;
default:
return false;
}
}
bool SILowerControlFlow::shouldSkip(MachineBasicBlock *From,
MachineBasicBlock *To) {
unsigned NumInstr = 0;
MachineFunction *MF = From->getParent();
for (MachineFunction::iterator MBBI(From), ToI(To), End = MF->end();
MBBI != End && MBBI != ToI; ++MBBI) {
MachineBasicBlock &MBB = *MBBI;
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
NumInstr < SkipThreshold && I != E; ++I) {
if (opcodeEmitsNoInsts(I->getOpcode()))
continue;
// When a uniform loop is inside non-uniform control flow, the branch
// leaving the loop might be an S_CBRANCH_VCCNZ, which is never taken
// when EXEC = 0. We should skip the loop lest it becomes infinite.
if (I->getOpcode() == AMDGPU::S_CBRANCH_VCCNZ ||
I->getOpcode() == AMDGPU::S_CBRANCH_VCCZ)
return true;
if (++NumInstr >= SkipThreshold)
return true;
}
}
return false;
}
void SILowerControlFlow::Skip(MachineInstr &From, MachineOperand &To) {
if (!shouldSkip(*From.getParent()->succ_begin(), To.getMBB()))
return;
DebugLoc DL = From.getDebugLoc();
BuildMI(*From.getParent(), &From, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ))
.addOperand(To);
}
void SILowerControlFlow::SkipIfDead(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
if (MBB.getParent()->getFunction()->getCallingConv() != CallingConv::AMDGPU_PS ||
!shouldSkip(&MBB, &MBB.getParent()->back()))
return;
MachineBasicBlock::iterator Insert = &MI;
++Insert;
// If the exec mask is non-zero, skip the next two instructions
BuildMI(MBB, Insert, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addImm(3);
// Exec mask is zero: Export to NULL target...
BuildMI(MBB, Insert, DL, TII->get(AMDGPU::EXP))
.addImm(0)
.addImm(0x09) // V_008DFC_SQ_EXP_NULL
.addImm(0)
.addImm(1)
.addImm(1)
.addReg(AMDGPU::VGPR0)
.addReg(AMDGPU::VGPR0)
.addReg(AMDGPU::VGPR0)
.addReg(AMDGPU::VGPR0);
// ... and terminate wavefront
BuildMI(MBB, Insert, DL, TII->get(AMDGPU::S_ENDPGM));
}
void SILowerControlFlow::If(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Reg = MI.getOperand(0).getReg();
unsigned Vcc = MI.getOperand(1).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), Reg)
.addReg(Vcc);
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), Reg)
.addReg(AMDGPU::EXEC)
.addReg(Reg);
Skip(MI, MI.getOperand(2));
// Insert a pseudo terminator to help keep the verifier happy.
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::SI_MASK_BRANCH))
.addOperand(MI.getOperand(2))
.addReg(Reg);
MI.eraseFromParent();
}
void SILowerControlFlow::Else(MachineInstr &MI, bool ExecModified) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Src = MI.getOperand(1).getReg();
BuildMI(MBB, MBB.getFirstNonPHI(), DL,
TII->get(AMDGPU::S_OR_SAVEEXEC_B64), Dst)
.addReg(Src); // Saved EXEC
if (ExecModified) {
// Adjust the saved exec to account for the modifications during the flow
// block that contains the ELSE. This can happen when WQM mode is switched
// off.
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_B64), Dst)
.addReg(AMDGPU::EXEC)
.addReg(Dst);
}
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(Dst);
Skip(MI, MI.getOperand(2));
// Insert a pseudo terminator to help keep the verifier happy.
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::SI_MASK_BRANCH))
.addOperand(MI.getOperand(2))
.addReg(Dst);
MI.eraseFromParent();
}
void SILowerControlFlow::Break(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Src = MI.getOperand(1).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
.addReg(AMDGPU::EXEC)
.addReg(Src);
MI.eraseFromParent();
}
void SILowerControlFlow::IfBreak(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Vcc = MI.getOperand(1).getReg();
unsigned Src = MI.getOperand(2).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
.addReg(Vcc)
.addReg(Src);
MI.eraseFromParent();
}
void SILowerControlFlow::ElseBreak(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Saved = MI.getOperand(1).getReg();
unsigned Src = MI.getOperand(2).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
.addReg(Saved)
.addReg(Src);
MI.eraseFromParent();
}
void SILowerControlFlow::Loop(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Src = MI.getOperand(0).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ANDN2_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(Src);
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addOperand(MI.getOperand(1));
MI.eraseFromParent();
}
void SILowerControlFlow::EndCf(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Reg = MI.getOperand(0).getReg();
BuildMI(MBB, MBB.getFirstNonPHI(), DL,
TII->get(AMDGPU::S_OR_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(Reg);
MI.eraseFromParent();
}
void SILowerControlFlow::Branch(MachineInstr &MI) {
MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
if (MBB == MI.getParent()->getNextNode())
MI.eraseFromParent();
// If these aren't equal, this is probably an infinite loop.
}
void SILowerControlFlow::Kill(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
const MachineOperand &Op = MI.getOperand(0);
#ifndef NDEBUG
CallingConv::ID CallConv = MBB.getParent()->getFunction()->getCallingConv();
// Kill is only allowed in pixel / geometry shaders.
assert(CallConv == CallingConv::AMDGPU_PS ||
CallConv == CallingConv::AMDGPU_GS);
#endif
// Clear this thread from the exec mask if the operand is negative
if ((Op.isImm())) {
// Constant operand: Set exec mask to 0 or do nothing
if (Op.getImm() & 0x80000000) {
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
.addImm(0);
}
} else {
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CMPX_LE_F32_e32))
.addImm(0)
.addOperand(Op);
}
MI.eraseFromParent();
}
// All currently live registers must remain so in the remainder block.
void SILowerControlFlow::splitBlockLiveIns(const MachineBasicBlock &MBB,
const MachineInstr &MI,
MachineBasicBlock &LoopBB,
MachineBasicBlock &RemainderBB,
unsigned SaveReg,
const MachineOperand &IdxReg) {
LivePhysRegs RemainderLiveRegs(TRI);
RemainderLiveRegs.addLiveOuts(MBB);
for (MachineBasicBlock::const_reverse_iterator I = MBB.rbegin(), E(&MI);
I != E; ++I) {
RemainderLiveRegs.stepBackward(*I);
}
// Add reg defined in loop body.
RemainderLiveRegs.addReg(SaveReg);
if (const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val)) {
if (!Val->isUndef()) {
RemainderLiveRegs.addReg(Val->getReg());
LoopBB.addLiveIn(Val->getReg());
}
}
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
for (unsigned Reg : RemainderLiveRegs) {
if (MRI.isAllocatable(Reg))
RemainderBB.addLiveIn(Reg);
}
const MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::src);
if (!Src->isUndef())
LoopBB.addLiveIn(Src->getReg());
if (!IdxReg.isUndef())
LoopBB.addLiveIn(IdxReg.getReg());
LoopBB.sortUniqueLiveIns();
}
void SILowerControlFlow::emitLoadM0FromVGPRLoop(MachineBasicBlock &LoopBB,
DebugLoc DL,
MachineInstr *MovRel,
const MachineOperand &IdxReg,
int Offset) {
MachineBasicBlock::iterator I = LoopBB.begin();
// Read the next variant into VCC (lower 32 bits) <- also loop target
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), AMDGPU::VCC_LO)
.addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
// Move index from VCC into M0
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.addReg(AMDGPU::VCC_LO);
// Compare the just read M0 value to all possible Idx values
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e32))
.addReg(AMDGPU::M0)
.addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
// Update EXEC, save the original EXEC value to VCC
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), AMDGPU::VCC)
.addReg(AMDGPU::VCC);
if (Offset) {
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
.addReg(AMDGPU::M0)
.addImm(Offset);
}
// Do the actual move
LoopBB.insert(I, MovRel);
// Update EXEC, switch all done bits to 0 and all todo bits to 1
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(AMDGPU::VCC);
// Loop back to V_READFIRSTLANE_B32 if there are still variants to cover
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addMBB(&LoopBB);
}
// Returns true if a new block was inserted.
bool SILowerControlFlow::loadM0(MachineInstr &MI, MachineInstr *MovRel, int Offset) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
MachineBasicBlock::iterator I(&MI);
const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
if (AMDGPU::SReg_32RegClass.contains(Idx->getReg())) {
if (Offset) {
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
.addReg(Idx->getReg(), getUndefRegState(Idx->isUndef()))
.addImm(Offset);
} else {
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.addReg(Idx->getReg(), getUndefRegState(Idx->isUndef()));
}
MBB.insert(I, MovRel);
MI.eraseFromParent();
return false;
}
MachineFunction &MF = *MBB.getParent();
MachineOperand *SaveOp = TII->getNamedOperand(MI, AMDGPU::OpName::sdst);
SaveOp->setIsDead(false);
unsigned Save = SaveOp->getReg();
// Reading from a VGPR requires looping over all workitems in the wavefront.
assert(AMDGPU::SReg_64RegClass.contains(Save) &&
AMDGPU::VGPR_32RegClass.contains(Idx->getReg()));
// Save the EXEC mask
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), Save)
.addReg(AMDGPU::EXEC);
// To insert the loop we need to split the block. Move everything after this
// point to a new block, and insert a new empty block between the two.
MachineBasicBlock *LoopBB = MF.CreateMachineBasicBlock();
MachineBasicBlock *RemainderBB = MF.CreateMachineBasicBlock();
MachineFunction::iterator MBBI(MBB);
++MBBI;
MF.insert(MBBI, LoopBB);
MF.insert(MBBI, RemainderBB);
LoopBB->addSuccessor(LoopBB);
LoopBB->addSuccessor(RemainderBB);
splitBlockLiveIns(MBB, MI, *LoopBB, *RemainderBB, Save, *Idx);
// Move the rest of the block into a new block.
RemainderBB->transferSuccessors(&MBB);
RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
MBB.addSuccessor(LoopBB);
emitLoadM0FromVGPRLoop(*LoopBB, DL, MovRel, *Idx, Offset);
MachineBasicBlock::iterator First = RemainderBB->begin();
BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
.addReg(Save);
MI.eraseFromParent();
return true;
}
/// \param @VecReg The register which holds element zero of the vector
/// being addressed into.
/// \param[out] @Reg The base register to use in the indirect addressing instruction.
/// \param[in,out] @Offset As an input, this is the constant offset part of the
// indirect Index. e.g. v0 = v[VecReg + Offset]
// As an output, this is a constant value that needs
// to be added to the value stored in M0.
std::pair<unsigned, int>
SILowerControlFlow::computeIndirectRegAndOffset(unsigned VecReg,
int Offset) const {
unsigned SubReg = TRI->getSubReg(VecReg, AMDGPU::sub0);
if (!SubReg)
SubReg = VecReg;
const TargetRegisterClass *SuperRC = TRI->getPhysRegClass(VecReg);
const TargetRegisterClass *RC = TRI->getPhysRegClass(SubReg);
int NumElts = SuperRC->getSize() / RC->getSize();
int BaseRegIdx = TRI->getHWRegIndex(SubReg);
// Skip out of bounds offsets, or else we would end up using an undefined
// register.
if (Offset >= NumElts)
return std::make_pair(RC->getRegister(BaseRegIdx), Offset);
int RegIdx = BaseRegIdx + Offset;
if (RegIdx < 0) {
Offset = RegIdx;
RegIdx = 0;
} else {
Offset = 0;
}
unsigned Reg = RC->getRegister(RegIdx);
return std::make_pair(Reg, Offset);
}
// Return true if a new block was inserted.
bool SILowerControlFlow::indirectSrc(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
int Off = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
unsigned Reg;
std::tie(Reg, Off) = computeIndirectRegAndOffset(SrcVec->getReg(), Off);
MachineInstr *MovRel =
BuildMI(*MBB.getParent(), DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
.addReg(Reg, getUndefRegState(SrcVec->isUndef()))
.addReg(SrcVec->getReg(), RegState::Implicit);
return loadM0(MI, MovRel, Off);
}
// Return true if a new block was inserted.
bool SILowerControlFlow::indirectDst(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
int Off = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
unsigned Reg;
std::tie(Reg, Off) = computeIndirectRegAndOffset(Dst, Off);
MachineInstr *MovRel =
BuildMI(*MBB.getParent(), DL, TII->get(AMDGPU::V_MOVRELD_B32_e32))
.addReg(Reg, RegState::Define)
.addReg(Val->getReg(), getUndefRegState(Val->isUndef()))
.addReg(Dst, RegState::Implicit);
return loadM0(MI, MovRel, Off);
}
bool SILowerControlFlow::runOnMachineFunction(MachineFunction &MF) {
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
TII = ST.getInstrInfo();
TRI = &TII->getRegisterInfo();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
bool HaveKill = false;
bool NeedFlat = false;
unsigned Depth = 0;
MachineFunction::iterator NextBB;
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; BI = NextBB) {
NextBB = std::next(BI);
MachineBasicBlock &MBB = *BI;
MachineBasicBlock *EmptyMBBAtEnd = nullptr;
MachineBasicBlock::iterator I, Next;
bool ExecModified = false;
for (I = MBB.begin(); I != MBB.end(); I = Next) {
Next = std::next(I);
MachineInstr &MI = *I;
// Flat uses m0 in case it needs to access LDS.
if (TII->isFLAT(MI))
NeedFlat = true;
if (I->modifiesRegister(AMDGPU::EXEC, TRI))
ExecModified = true;
switch (MI.getOpcode()) {
default: break;
case AMDGPU::SI_IF:
++Depth;
If(MI);
break;
case AMDGPU::SI_ELSE:
Else(MI, ExecModified);
break;
case AMDGPU::SI_BREAK:
Break(MI);
break;
case AMDGPU::SI_IF_BREAK:
IfBreak(MI);
break;
case AMDGPU::SI_ELSE_BREAK:
ElseBreak(MI);
break;
case AMDGPU::SI_LOOP:
++Depth;
Loop(MI);
break;
case AMDGPU::SI_END_CF:
if (--Depth == 0 && HaveKill) {
SkipIfDead(MI);
HaveKill = false;
}
EndCf(MI);
break;
case AMDGPU::SI_KILL:
if (Depth == 0)
SkipIfDead(MI);
else
HaveKill = true;
Kill(MI);
break;
case AMDGPU::S_BRANCH:
Branch(MI);
break;
case AMDGPU::SI_INDIRECT_SRC_V1:
case AMDGPU::SI_INDIRECT_SRC_V2:
case AMDGPU::SI_INDIRECT_SRC_V4:
case AMDGPU::SI_INDIRECT_SRC_V8:
case AMDGPU::SI_INDIRECT_SRC_V16:
if (indirectSrc(MI)) {
// The block was split at this point. We can safely skip the middle
// inserted block to the following which contains the rest of this
// block's instructions.
NextBB = std::next(BI);
BE = MF.end();
Next = MBB.end();
}
break;
case AMDGPU::SI_INDIRECT_DST_V1:
case AMDGPU::SI_INDIRECT_DST_V2:
case AMDGPU::SI_INDIRECT_DST_V4:
case AMDGPU::SI_INDIRECT_DST_V8:
case AMDGPU::SI_INDIRECT_DST_V16:
if (indirectDst(MI)) {
// The block was split at this point. We can safely skip the middle
// inserted block to the following which contains the rest of this
// block's instructions.
NextBB = std::next(BI);
BE = MF.end();
Next = MBB.end();
}
break;
case AMDGPU::SI_RETURN: {
assert(!MF.getInfo<SIMachineFunctionInfo>()->returnsVoid());
// Graphics shaders returning non-void shouldn't contain S_ENDPGM,
// because external bytecode will be appended at the end.
if (BI != --MF.end() || I != MBB.getFirstTerminator()) {
// SI_RETURN is not the last instruction. Add an empty block at
// the end and jump there.
if (!EmptyMBBAtEnd) {
EmptyMBBAtEnd = MF.CreateMachineBasicBlock();
MF.insert(MF.end(), EmptyMBBAtEnd);
}
MBB.addSuccessor(EmptyMBBAtEnd);
BuildMI(*BI, I, MI.getDebugLoc(), TII->get(AMDGPU::S_BRANCH))
.addMBB(EmptyMBBAtEnd);
I->eraseFromParent();
}
break;
}
}
}
}
if (NeedFlat && MFI->IsKernel) {
// TODO: What to use with function calls?
// We will need to Initialize the flat scratch register pair.
if (NeedFlat)
MFI->setHasFlatInstructions(true);
}
return true;
}