llvm-mirror/unittests/CodeGen/ScalableVectorMVTsTest.cpp
Graham Hunter 6e15087bc5 [SVE][CodeGen] Scalable vector MVT size queries
* Implements scalable size queries for MVTs, split out from D53137.

* Contains a fix for FindMemType to avoid using scalable vector type
  to contain non-scalable types.

* Explicit casts for several places where implicit integer sign
  changes or promotion from 32 to 64 bits caused problems.

* CodeGenDAGPatterns will treat scalable and non-scalable vector types
  as different.

Reviewers: greened, cameron.mcinally, sdesmalen, rovka

Reviewed By: rovka

Differential Revision: https://reviews.llvm.org/D66871
2019-11-18 12:30:59 +00:00

181 lines
6.8 KiB
C++

//===-------- llvm/unittest/CodeGen/ScalableVectorMVTsTest.cpp ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/TypeSize.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
TEST(ScalableVectorMVTsTest, IntegerMVTs) {
for (auto VecTy : MVT::integer_scalable_vector_valuetypes()) {
ASSERT_TRUE(VecTy.isValid());
ASSERT_TRUE(VecTy.isInteger());
ASSERT_TRUE(VecTy.isVector());
ASSERT_TRUE(VecTy.isScalableVector());
ASSERT_TRUE(VecTy.getScalarType().isValid());
ASSERT_FALSE(VecTy.isFloatingPoint());
}
}
TEST(ScalableVectorMVTsTest, FloatMVTs) {
for (auto VecTy : MVT::fp_scalable_vector_valuetypes()) {
ASSERT_TRUE(VecTy.isValid());
ASSERT_TRUE(VecTy.isFloatingPoint());
ASSERT_TRUE(VecTy.isVector());
ASSERT_TRUE(VecTy.isScalableVector());
ASSERT_TRUE(VecTy.getScalarType().isValid());
ASSERT_FALSE(VecTy.isInteger());
}
}
TEST(ScalableVectorMVTsTest, HelperFuncs) {
LLVMContext Ctx;
// Create with scalable flag
EVT Vnx4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/true);
ASSERT_TRUE(Vnx4i32.isScalableVector());
// Create with separate llvm::ElementCount
auto EltCnt = ElementCount(2, true);
EVT Vnx2i32 = EVT::getVectorVT(Ctx, MVT::i32, EltCnt);
ASSERT_TRUE(Vnx2i32.isScalableVector());
// Create with inline llvm::ElementCount
EVT Vnx2i64 = EVT::getVectorVT(Ctx, MVT::i64, {2, true});
ASSERT_TRUE(Vnx2i64.isScalableVector());
// Check that changing scalar types/element count works
EXPECT_EQ(Vnx2i32.widenIntegerVectorElementType(Ctx), Vnx2i64);
EXPECT_EQ(Vnx4i32.getHalfNumVectorElementsVT(Ctx), Vnx2i32);
// Check that overloaded '*' and '/' operators work
EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt * 2), MVT::nxv4i64);
EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt / 2), MVT::nxv1i64);
// Check that float->int conversion works
EVT Vnx2f64 = EVT::getVectorVT(Ctx, MVT::f64, {2, true});
EXPECT_EQ(Vnx2f64.changeTypeToInteger(), Vnx2i64);
// Check fields inside llvm::ElementCount
EltCnt = Vnx4i32.getVectorElementCount();
EXPECT_EQ(EltCnt.Min, 4U);
ASSERT_TRUE(EltCnt.Scalable);
// Check that fixed-length vector types aren't scalable.
EVT V8i32 = EVT::getVectorVT(Ctx, MVT::i32, 8);
ASSERT_FALSE(V8i32.isScalableVector());
EVT V4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, false});
ASSERT_FALSE(V4f64.isScalableVector());
// Check that llvm::ElementCount works for fixed-length types.
EltCnt = V8i32.getVectorElementCount();
EXPECT_EQ(EltCnt.Min, 8U);
ASSERT_FALSE(EltCnt.Scalable);
}
TEST(ScalableVectorMVTsTest, IRToVTTranslation) {
LLVMContext Ctx;
Type *Int64Ty = Type::getInt64Ty(Ctx);
VectorType *ScV8Int64Ty = VectorType::get(Int64Ty, {8, true});
// Check that we can map a scalable IR type to an MVT
MVT Mnxv8i64 = MVT::getVT(ScV8Int64Ty);
ASSERT_TRUE(Mnxv8i64.isScalableVector());
ASSERT_EQ(ScV8Int64Ty->getElementCount(), Mnxv8i64.getVectorElementCount());
ASSERT_EQ(MVT::getVT(ScV8Int64Ty->getElementType()),
Mnxv8i64.getScalarType());
// Check that we can map a scalable IR type to an EVT
EVT Enxv8i64 = EVT::getEVT(ScV8Int64Ty);
ASSERT_TRUE(Enxv8i64.isScalableVector());
ASSERT_EQ(ScV8Int64Ty->getElementCount(), Enxv8i64.getVectorElementCount());
ASSERT_EQ(EVT::getEVT(ScV8Int64Ty->getElementType()),
Enxv8i64.getScalarType());
}
TEST(ScalableVectorMVTsTest, VTToIRTranslation) {
LLVMContext Ctx;
EVT Enxv4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, true});
Type *Ty = Enxv4f64.getTypeForEVT(Ctx);
VectorType *ScV4Float64Ty = cast<VectorType>(Ty);
ASSERT_TRUE(ScV4Float64Ty->isScalable());
ASSERT_EQ(Enxv4f64.getVectorElementCount(), ScV4Float64Ty->getElementCount());
ASSERT_EQ(Enxv4f64.getScalarType().getTypeForEVT(Ctx),
ScV4Float64Ty->getElementType());
}
TEST(ScalableVectorMVTsTest, SizeQueries) {
LLVMContext Ctx;
EVT nxv4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/ true);
EVT nxv2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2, /*Scalable=*/ true);
EVT nxv2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2, /*Scalable=*/ true);
EVT nxv2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2, /*Scalable=*/ true);
EVT v4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4);
EVT v2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2);
EVT v2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2);
EVT v2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2);
// Check equivalence and ordering on scalable types.
EXPECT_EQ(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits());
EXPECT_EQ(nxv2f64.getSizeInBits(), nxv2i64.getSizeInBits());
EXPECT_NE(nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits());
EXPECT_LT(nxv2i32.getSizeInBits(), nxv2i64.getSizeInBits());
EXPECT_LE(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits());
EXPECT_GT(nxv4i32.getSizeInBits(), nxv2i32.getSizeInBits());
EXPECT_GE(nxv2i64.getSizeInBits(), nxv4i32.getSizeInBits());
// Check equivalence and ordering on fixed types.
EXPECT_EQ(v4i32.getSizeInBits(), v2i64.getSizeInBits());
EXPECT_EQ(v2f64.getSizeInBits(), v2i64.getSizeInBits());
EXPECT_NE(v2i32.getSizeInBits(), v4i32.getSizeInBits());
EXPECT_LT(v2i32.getSizeInBits(), v2i64.getSizeInBits());
EXPECT_LE(v4i32.getSizeInBits(), v2i64.getSizeInBits());
EXPECT_GT(v4i32.getSizeInBits(), v2i32.getSizeInBits());
EXPECT_GE(v2i64.getSizeInBits(), v4i32.getSizeInBits());
// Check that scalable and non-scalable types with the same minimum size
// are not considered equal.
ASSERT_TRUE(v4i32.getSizeInBits() != nxv4i32.getSizeInBits());
ASSERT_FALSE(v2i64.getSizeInBits() == nxv2f64.getSizeInBits());
// Check that we can obtain a known-exact size from a non-scalable type.
EXPECT_EQ(v4i32.getSizeInBits(), 128U);
EXPECT_EQ(v2i64.getSizeInBits().getFixedSize(), 128U);
// Check that we can query the known minimum size for both scalable and
// fixed length types.
EXPECT_EQ(nxv2i32.getSizeInBits().getKnownMinSize(), 64U);
EXPECT_EQ(nxv2f64.getSizeInBits().getKnownMinSize(), 128U);
EXPECT_EQ(v2i32.getSizeInBits().getKnownMinSize(),
nxv2i32.getSizeInBits().getKnownMinSize());
// Check scalable property.
ASSERT_FALSE(v4i32.getSizeInBits().isScalable());
ASSERT_TRUE(nxv4i32.getSizeInBits().isScalable());
// Check convenience size scaling methods.
EXPECT_EQ(v2i32.getSizeInBits() * 2, v4i32.getSizeInBits());
EXPECT_EQ(2 * nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits());
EXPECT_EQ(nxv2f64.getSizeInBits() / 2, nxv2i32.getSizeInBits());
}
} // end anonymous namespace