mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-10 05:41:40 +00:00
6e15087bc5
* Implements scalable size queries for MVTs, split out from D53137. * Contains a fix for FindMemType to avoid using scalable vector type to contain non-scalable types. * Explicit casts for several places where implicit integer sign changes or promotion from 32 to 64 bits caused problems. * CodeGenDAGPatterns will treat scalable and non-scalable vector types as different. Reviewers: greened, cameron.mcinally, sdesmalen, rovka Reviewed By: rovka Differential Revision: https://reviews.llvm.org/D66871
181 lines
6.8 KiB
C++
181 lines
6.8 KiB
C++
//===-------- llvm/unittest/CodeGen/ScalableVectorMVTsTest.cpp ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Support/TypeSize.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
TEST(ScalableVectorMVTsTest, IntegerMVTs) {
|
|
for (auto VecTy : MVT::integer_scalable_vector_valuetypes()) {
|
|
ASSERT_TRUE(VecTy.isValid());
|
|
ASSERT_TRUE(VecTy.isInteger());
|
|
ASSERT_TRUE(VecTy.isVector());
|
|
ASSERT_TRUE(VecTy.isScalableVector());
|
|
ASSERT_TRUE(VecTy.getScalarType().isValid());
|
|
|
|
ASSERT_FALSE(VecTy.isFloatingPoint());
|
|
}
|
|
}
|
|
|
|
TEST(ScalableVectorMVTsTest, FloatMVTs) {
|
|
for (auto VecTy : MVT::fp_scalable_vector_valuetypes()) {
|
|
ASSERT_TRUE(VecTy.isValid());
|
|
ASSERT_TRUE(VecTy.isFloatingPoint());
|
|
ASSERT_TRUE(VecTy.isVector());
|
|
ASSERT_TRUE(VecTy.isScalableVector());
|
|
ASSERT_TRUE(VecTy.getScalarType().isValid());
|
|
|
|
ASSERT_FALSE(VecTy.isInteger());
|
|
}
|
|
}
|
|
|
|
TEST(ScalableVectorMVTsTest, HelperFuncs) {
|
|
LLVMContext Ctx;
|
|
|
|
// Create with scalable flag
|
|
EVT Vnx4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/true);
|
|
ASSERT_TRUE(Vnx4i32.isScalableVector());
|
|
|
|
// Create with separate llvm::ElementCount
|
|
auto EltCnt = ElementCount(2, true);
|
|
EVT Vnx2i32 = EVT::getVectorVT(Ctx, MVT::i32, EltCnt);
|
|
ASSERT_TRUE(Vnx2i32.isScalableVector());
|
|
|
|
// Create with inline llvm::ElementCount
|
|
EVT Vnx2i64 = EVT::getVectorVT(Ctx, MVT::i64, {2, true});
|
|
ASSERT_TRUE(Vnx2i64.isScalableVector());
|
|
|
|
// Check that changing scalar types/element count works
|
|
EXPECT_EQ(Vnx2i32.widenIntegerVectorElementType(Ctx), Vnx2i64);
|
|
EXPECT_EQ(Vnx4i32.getHalfNumVectorElementsVT(Ctx), Vnx2i32);
|
|
|
|
// Check that overloaded '*' and '/' operators work
|
|
EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt * 2), MVT::nxv4i64);
|
|
EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt / 2), MVT::nxv1i64);
|
|
|
|
// Check that float->int conversion works
|
|
EVT Vnx2f64 = EVT::getVectorVT(Ctx, MVT::f64, {2, true});
|
|
EXPECT_EQ(Vnx2f64.changeTypeToInteger(), Vnx2i64);
|
|
|
|
// Check fields inside llvm::ElementCount
|
|
EltCnt = Vnx4i32.getVectorElementCount();
|
|
EXPECT_EQ(EltCnt.Min, 4U);
|
|
ASSERT_TRUE(EltCnt.Scalable);
|
|
|
|
// Check that fixed-length vector types aren't scalable.
|
|
EVT V8i32 = EVT::getVectorVT(Ctx, MVT::i32, 8);
|
|
ASSERT_FALSE(V8i32.isScalableVector());
|
|
EVT V4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, false});
|
|
ASSERT_FALSE(V4f64.isScalableVector());
|
|
|
|
// Check that llvm::ElementCount works for fixed-length types.
|
|
EltCnt = V8i32.getVectorElementCount();
|
|
EXPECT_EQ(EltCnt.Min, 8U);
|
|
ASSERT_FALSE(EltCnt.Scalable);
|
|
}
|
|
|
|
TEST(ScalableVectorMVTsTest, IRToVTTranslation) {
|
|
LLVMContext Ctx;
|
|
|
|
Type *Int64Ty = Type::getInt64Ty(Ctx);
|
|
VectorType *ScV8Int64Ty = VectorType::get(Int64Ty, {8, true});
|
|
|
|
// Check that we can map a scalable IR type to an MVT
|
|
MVT Mnxv8i64 = MVT::getVT(ScV8Int64Ty);
|
|
ASSERT_TRUE(Mnxv8i64.isScalableVector());
|
|
ASSERT_EQ(ScV8Int64Ty->getElementCount(), Mnxv8i64.getVectorElementCount());
|
|
ASSERT_EQ(MVT::getVT(ScV8Int64Ty->getElementType()),
|
|
Mnxv8i64.getScalarType());
|
|
|
|
// Check that we can map a scalable IR type to an EVT
|
|
EVT Enxv8i64 = EVT::getEVT(ScV8Int64Ty);
|
|
ASSERT_TRUE(Enxv8i64.isScalableVector());
|
|
ASSERT_EQ(ScV8Int64Ty->getElementCount(), Enxv8i64.getVectorElementCount());
|
|
ASSERT_EQ(EVT::getEVT(ScV8Int64Ty->getElementType()),
|
|
Enxv8i64.getScalarType());
|
|
}
|
|
|
|
TEST(ScalableVectorMVTsTest, VTToIRTranslation) {
|
|
LLVMContext Ctx;
|
|
|
|
EVT Enxv4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, true});
|
|
|
|
Type *Ty = Enxv4f64.getTypeForEVT(Ctx);
|
|
VectorType *ScV4Float64Ty = cast<VectorType>(Ty);
|
|
ASSERT_TRUE(ScV4Float64Ty->isScalable());
|
|
ASSERT_EQ(Enxv4f64.getVectorElementCount(), ScV4Float64Ty->getElementCount());
|
|
ASSERT_EQ(Enxv4f64.getScalarType().getTypeForEVT(Ctx),
|
|
ScV4Float64Ty->getElementType());
|
|
}
|
|
|
|
TEST(ScalableVectorMVTsTest, SizeQueries) {
|
|
LLVMContext Ctx;
|
|
|
|
EVT nxv4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/ true);
|
|
EVT nxv2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2, /*Scalable=*/ true);
|
|
EVT nxv2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2, /*Scalable=*/ true);
|
|
EVT nxv2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2, /*Scalable=*/ true);
|
|
|
|
EVT v4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4);
|
|
EVT v2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2);
|
|
EVT v2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2);
|
|
EVT v2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2);
|
|
|
|
// Check equivalence and ordering on scalable types.
|
|
EXPECT_EQ(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits());
|
|
EXPECT_EQ(nxv2f64.getSizeInBits(), nxv2i64.getSizeInBits());
|
|
EXPECT_NE(nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits());
|
|
EXPECT_LT(nxv2i32.getSizeInBits(), nxv2i64.getSizeInBits());
|
|
EXPECT_LE(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits());
|
|
EXPECT_GT(nxv4i32.getSizeInBits(), nxv2i32.getSizeInBits());
|
|
EXPECT_GE(nxv2i64.getSizeInBits(), nxv4i32.getSizeInBits());
|
|
|
|
// Check equivalence and ordering on fixed types.
|
|
EXPECT_EQ(v4i32.getSizeInBits(), v2i64.getSizeInBits());
|
|
EXPECT_EQ(v2f64.getSizeInBits(), v2i64.getSizeInBits());
|
|
EXPECT_NE(v2i32.getSizeInBits(), v4i32.getSizeInBits());
|
|
EXPECT_LT(v2i32.getSizeInBits(), v2i64.getSizeInBits());
|
|
EXPECT_LE(v4i32.getSizeInBits(), v2i64.getSizeInBits());
|
|
EXPECT_GT(v4i32.getSizeInBits(), v2i32.getSizeInBits());
|
|
EXPECT_GE(v2i64.getSizeInBits(), v4i32.getSizeInBits());
|
|
|
|
// Check that scalable and non-scalable types with the same minimum size
|
|
// are not considered equal.
|
|
ASSERT_TRUE(v4i32.getSizeInBits() != nxv4i32.getSizeInBits());
|
|
ASSERT_FALSE(v2i64.getSizeInBits() == nxv2f64.getSizeInBits());
|
|
|
|
// Check that we can obtain a known-exact size from a non-scalable type.
|
|
EXPECT_EQ(v4i32.getSizeInBits(), 128U);
|
|
EXPECT_EQ(v2i64.getSizeInBits().getFixedSize(), 128U);
|
|
|
|
// Check that we can query the known minimum size for both scalable and
|
|
// fixed length types.
|
|
EXPECT_EQ(nxv2i32.getSizeInBits().getKnownMinSize(), 64U);
|
|
EXPECT_EQ(nxv2f64.getSizeInBits().getKnownMinSize(), 128U);
|
|
EXPECT_EQ(v2i32.getSizeInBits().getKnownMinSize(),
|
|
nxv2i32.getSizeInBits().getKnownMinSize());
|
|
|
|
// Check scalable property.
|
|
ASSERT_FALSE(v4i32.getSizeInBits().isScalable());
|
|
ASSERT_TRUE(nxv4i32.getSizeInBits().isScalable());
|
|
|
|
// Check convenience size scaling methods.
|
|
EXPECT_EQ(v2i32.getSizeInBits() * 2, v4i32.getSizeInBits());
|
|
EXPECT_EQ(2 * nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits());
|
|
EXPECT_EQ(nxv2f64.getSizeInBits() / 2, nxv2i32.getSizeInBits());
|
|
}
|
|
|
|
} // end anonymous namespace
|