llvm-mirror/lib/VMCore/Instructions.cpp

3345 lines
121 KiB
C++

//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements all of the non-inline methods for the LLVM instruction
// classes.
//
//===----------------------------------------------------------------------===//
#include "LLVMContextImpl.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Operator.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// CallSite Class
//===----------------------------------------------------------------------===//
User::op_iterator CallSite::getCallee() const {
Instruction *II(getInstruction());
return isCall()
? (CallInst::ArgOffset
? cast</*FIXME: CallInst*/User>(II)->op_begin()
: cast</*FIXME: CallInst*/User>(II)->op_end() - 1)
: cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Function
}
//===----------------------------------------------------------------------===//
// TerminatorInst Class
//===----------------------------------------------------------------------===//
// Out of line virtual method, so the vtable, etc has a home.
TerminatorInst::~TerminatorInst() {
}
//===----------------------------------------------------------------------===//
// UnaryInstruction Class
//===----------------------------------------------------------------------===//
// Out of line virtual method, so the vtable, etc has a home.
UnaryInstruction::~UnaryInstruction() {
}
//===----------------------------------------------------------------------===//
// SelectInst Class
//===----------------------------------------------------------------------===//
/// areInvalidOperands - Return a string if the specified operands are invalid
/// for a select operation, otherwise return null.
const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
if (Op1->getType() != Op2->getType())
return "both values to select must have same type";
if (const VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
// Vector select.
if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
return "vector select condition element type must be i1";
const VectorType *ET = dyn_cast<VectorType>(Op1->getType());
if (ET == 0)
return "selected values for vector select must be vectors";
if (ET->getNumElements() != VT->getNumElements())
return "vector select requires selected vectors to have "
"the same vector length as select condition";
} else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
return "select condition must be i1 or <n x i1>";
}
return 0;
}
//===----------------------------------------------------------------------===//
// PHINode Class
//===----------------------------------------------------------------------===//
PHINode::PHINode(const PHINode &PN)
: Instruction(PN.getType(), Instruction::PHI,
allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
ReservedSpace(PN.getNumOperands()) {
Use *OL = OperandList;
for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
OL[i] = PN.getOperand(i);
OL[i+1] = PN.getOperand(i+1);
}
SubclassOptionalData = PN.SubclassOptionalData;
}
PHINode::~PHINode() {
if (OperandList)
dropHungoffUses(OperandList);
}
// removeIncomingValue - Remove an incoming value. This is useful if a
// predecessor basic block is deleted.
Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
unsigned NumOps = getNumOperands();
Use *OL = OperandList;
assert(Idx*2 < NumOps && "BB not in PHI node!");
Value *Removed = OL[Idx*2];
// Move everything after this operand down.
//
// FIXME: we could just swap with the end of the list, then erase. However,
// client might not expect this to happen. The code as it is thrashes the
// use/def lists, which is kinda lame.
for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
OL[i-2] = OL[i];
OL[i-2+1] = OL[i+1];
}
// Nuke the last value.
OL[NumOps-2].set(0);
OL[NumOps-2+1].set(0);
NumOperands = NumOps-2;
// If the PHI node is dead, because it has zero entries, nuke it now.
if (NumOps == 2 && DeletePHIIfEmpty) {
// If anyone is using this PHI, make them use a dummy value instead...
replaceAllUsesWith(UndefValue::get(getType()));
eraseFromParent();
}
return Removed;
}
/// resizeOperands - resize operands - This adjusts the length of the operands
/// list according to the following behavior:
/// 1. If NumOps == 0, grow the operand list in response to a push_back style
/// of operation. This grows the number of ops by 1.5 times.
/// 2. If NumOps > NumOperands, reserve space for NumOps operands.
/// 3. If NumOps == NumOperands, trim the reserved space.
///
void PHINode::resizeOperands(unsigned NumOps) {
unsigned e = getNumOperands();
if (NumOps == 0) {
NumOps = e*3/2;
if (NumOps < 4) NumOps = 4; // 4 op PHI nodes are VERY common.
} else if (NumOps*2 > NumOperands) {
// No resize needed.
if (ReservedSpace >= NumOps) return;
} else if (NumOps == NumOperands) {
if (ReservedSpace == NumOps) return;
} else {
return;
}
ReservedSpace = NumOps;
Use *OldOps = OperandList;
Use *NewOps = allocHungoffUses(NumOps);
std::copy(OldOps, OldOps + e, NewOps);
OperandList = NewOps;
if (OldOps) Use::zap(OldOps, OldOps + e, true);
}
/// hasConstantValue - If the specified PHI node always merges together the same
/// value, return the value, otherwise return null.
///
/// If the PHI has undef operands, but all the rest of the operands are
/// some unique value, return that value if it can be proved that the
/// value dominates the PHI. If DT is null, use a conservative check,
/// otherwise use DT to test for dominance.
///
Value *PHINode::hasConstantValue(DominatorTree *DT) const {
// If the PHI node only has one incoming value, eliminate the PHI node.
if (getNumIncomingValues() == 1) {
if (getIncomingValue(0) != this) // not X = phi X
return getIncomingValue(0);
return UndefValue::get(getType()); // Self cycle is dead.
}
// Otherwise if all of the incoming values are the same for the PHI, replace
// the PHI node with the incoming value.
//
Value *InVal = 0;
bool HasUndefInput = false;
for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
if (isa<UndefValue>(getIncomingValue(i))) {
HasUndefInput = true;
} else if (getIncomingValue(i) != this) { // Not the PHI node itself...
if (InVal && getIncomingValue(i) != InVal)
return 0; // Not the same, bail out.
InVal = getIncomingValue(i);
}
// The only case that could cause InVal to be null is if we have a PHI node
// that only has entries for itself. In this case, there is no entry into the
// loop, so kill the PHI.
//
if (InVal == 0) InVal = UndefValue::get(getType());
// If we have a PHI node like phi(X, undef, X), where X is defined by some
// instruction, we cannot always return X as the result of the PHI node. Only
// do this if X is not an instruction (thus it must dominate the PHI block),
// or if the client is prepared to deal with this possibility.
if (!HasUndefInput || !isa<Instruction>(InVal))
return InVal;
Instruction *IV = cast<Instruction>(InVal);
if (DT) {
// We have a DominatorTree. Do a precise test.
if (!DT->dominates(IV, this))
return 0;
} else {
// If it is in the entry block, it obviously dominates everything.
if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() ||
isa<InvokeInst>(IV))
return 0; // Cannot guarantee that InVal dominates this PHINode.
}
// All of the incoming values are the same, return the value now.
return InVal;
}
//===----------------------------------------------------------------------===//
// CallInst Implementation
//===----------------------------------------------------------------------===//
CallInst::~CallInst() {
}
void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) {
assert(NumOperands == NumParams+1 && "NumOperands not set up?");
Op<ArgOffset -1>() = Func;
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
FTy = FTy; // silence warning.
assert((NumParams == FTy->getNumParams() ||
(FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
"Calling a function with bad signature!");
for (unsigned i = 0; i != NumParams; ++i) {
assert((i >= FTy->getNumParams() ||
FTy->getParamType(i) == Params[i]->getType()) &&
"Calling a function with a bad signature!");
OperandList[i + ArgOffset] = Params[i];
}
}
void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
assert(NumOperands == 3 && "NumOperands not set up?");
Op<ArgOffset -1>() = Func;
Op<ArgOffset + 0>() = Actual1;
Op<ArgOffset + 1>() = Actual2;
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
FTy = FTy; // silence warning.
assert((FTy->getNumParams() == 2 ||
(FTy->isVarArg() && FTy->getNumParams() < 2)) &&
"Calling a function with bad signature");
assert((0 >= FTy->getNumParams() ||
FTy->getParamType(0) == Actual1->getType()) &&
"Calling a function with a bad signature!");
assert((1 >= FTy->getNumParams() ||
FTy->getParamType(1) == Actual2->getType()) &&
"Calling a function with a bad signature!");
}
void CallInst::init(Value *Func, Value *Actual) {
assert(NumOperands == 2 && "NumOperands not set up?");
Op<ArgOffset -1>() = Func;
Op<ArgOffset + 0>() = Actual;
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
FTy = FTy; // silence warning.
assert((FTy->getNumParams() == 1 ||
(FTy->isVarArg() && FTy->getNumParams() == 0)) &&
"Calling a function with bad signature");
assert((0 == FTy->getNumParams() ||
FTy->getParamType(0) == Actual->getType()) &&
"Calling a function with a bad signature!");
}
void CallInst::init(Value *Func) {
assert(NumOperands == 1 && "NumOperands not set up?");
Op<ArgOffset -1>() = Func;
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
FTy = FTy; // silence warning.
assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
}
CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call,
OperandTraits<CallInst>::op_end(this) - 2,
2, InsertBefore) {
init(Func, Actual);
setName(Name);
}
CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call,
OperandTraits<CallInst>::op_end(this) - 2,
2, InsertAtEnd) {
init(Func, Actual);
setName(Name);
}
CallInst::CallInst(Value *Func, const Twine &Name,
Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call,
OperandTraits<CallInst>::op_end(this) - 1,
1, InsertBefore) {
init(Func);
setName(Name);
}
CallInst::CallInst(Value *Func, const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call,
OperandTraits<CallInst>::op_end(this) - 1,
1, InsertAtEnd) {
init(Func);
setName(Name);
}
CallInst::CallInst(const CallInst &CI)
: Instruction(CI.getType(), Instruction::Call,
OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
CI.getNumOperands()) {
setAttributes(CI.getAttributes());
setTailCall(CI.isTailCall());
setCallingConv(CI.getCallingConv());
Use *OL = OperandList;
Use *InOL = CI.OperandList;
for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
OL[i] = InOL[i];
SubclassOptionalData = CI.SubclassOptionalData;
}
void CallInst::addAttribute(unsigned i, Attributes attr) {
AttrListPtr PAL = getAttributes();
PAL = PAL.addAttr(i, attr);
setAttributes(PAL);
}
void CallInst::removeAttribute(unsigned i, Attributes attr) {
AttrListPtr PAL = getAttributes();
PAL = PAL.removeAttr(i, attr);
setAttributes(PAL);
}
bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
if (AttributeList.paramHasAttr(i, attr))
return true;
if (const Function *F = getCalledFunction())
return F->paramHasAttr(i, attr);
return false;
}
/// IsConstantOne - Return true only if val is constant int 1
static bool IsConstantOne(Value *val) {
assert(val && "IsConstantOne does not work with NULL val");
return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
}
static Instruction *createMalloc(Instruction *InsertBefore,
BasicBlock *InsertAtEnd, const Type *IntPtrTy,
const Type *AllocTy, Value *AllocSize,
Value *ArraySize, Function *MallocF,
const Twine &Name) {
assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
"createMalloc needs either InsertBefore or InsertAtEnd");
// malloc(type) becomes:
// bitcast (i8* malloc(typeSize)) to type*
// malloc(type, arraySize) becomes:
// bitcast (i8 *malloc(typeSize*arraySize)) to type*
if (!ArraySize)
ArraySize = ConstantInt::get(IntPtrTy, 1);
else if (ArraySize->getType() != IntPtrTy) {
if (InsertBefore)
ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
"", InsertBefore);
else
ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
"", InsertAtEnd);
}
if (!IsConstantOne(ArraySize)) {
if (IsConstantOne(AllocSize)) {
AllocSize = ArraySize; // Operand * 1 = Operand
} else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
false /*ZExt*/);
// Malloc arg is constant product of type size and array size
AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
} else {
// Multiply type size by the array size...
if (InsertBefore)
AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
"mallocsize", InsertBefore);
else
AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
"mallocsize", InsertAtEnd);
}
}
assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
// Create the call to Malloc.
BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
Module* M = BB->getParent()->getParent();
const Type *BPTy = Type::getInt8PtrTy(BB->getContext());
Value *MallocFunc = MallocF;
if (!MallocFunc)
// prototype malloc as "void *malloc(size_t)"
MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
const PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
CallInst *MCall = NULL;
Instruction *Result = NULL;
if (InsertBefore) {
MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
Result = MCall;
if (Result->getType() != AllocPtrType)
// Create a cast instruction to convert to the right type...
Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
} else {
MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
Result = MCall;
if (Result->getType() != AllocPtrType) {
InsertAtEnd->getInstList().push_back(MCall);
// Create a cast instruction to convert to the right type...
Result = new BitCastInst(MCall, AllocPtrType, Name);
}
}
MCall->setTailCall();
if (Function *F = dyn_cast<Function>(MallocFunc)) {
MCall->setCallingConv(F->getCallingConv());
if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
}
assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
return Result;
}
/// CreateMalloc - Generate the IR for a call to malloc:
/// 1. Compute the malloc call's argument as the specified type's size,
/// possibly multiplied by the array size if the array size is not
/// constant 1.
/// 2. Call malloc with that argument.
/// 3. Bitcast the result of the malloc call to the specified type.
Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
const Type *IntPtrTy, const Type *AllocTy,
Value *AllocSize, Value *ArraySize,
const Twine &Name) {
return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
ArraySize, NULL, Name);
}
/// CreateMalloc - Generate the IR for a call to malloc:
/// 1. Compute the malloc call's argument as the specified type's size,
/// possibly multiplied by the array size if the array size is not
/// constant 1.
/// 2. Call malloc with that argument.
/// 3. Bitcast the result of the malloc call to the specified type.
/// Note: This function does not add the bitcast to the basic block, that is the
/// responsibility of the caller.
Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
const Type *IntPtrTy, const Type *AllocTy,
Value *AllocSize, Value *ArraySize,
Function *MallocF, const Twine &Name) {
return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
ArraySize, MallocF, Name);
}
static Instruction* createFree(Value* Source, Instruction *InsertBefore,
BasicBlock *InsertAtEnd) {
assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
"createFree needs either InsertBefore or InsertAtEnd");
assert(Source->getType()->isPointerTy() &&
"Can not free something of nonpointer type!");
BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
Module* M = BB->getParent()->getParent();
const Type *VoidTy = Type::getVoidTy(M->getContext());
const Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
// prototype free as "void free(void*)"
Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
CallInst* Result = NULL;
Value *PtrCast = Source;
if (InsertBefore) {
if (Source->getType() != IntPtrTy)
PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
} else {
if (Source->getType() != IntPtrTy)
PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
Result = CallInst::Create(FreeFunc, PtrCast, "");
}
Result->setTailCall();
if (Function *F = dyn_cast<Function>(FreeFunc))
Result->setCallingConv(F->getCallingConv());
return Result;
}
/// CreateFree - Generate the IR for a call to the builtin free function.
void CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
createFree(Source, InsertBefore, NULL);
}
/// CreateFree - Generate the IR for a call to the builtin free function.
/// Note: This function does not add the call to the basic block, that is the
/// responsibility of the caller.
Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
assert(FreeCall && "CreateFree did not create a CallInst");
return FreeCall;
}
//===----------------------------------------------------------------------===//
// InvokeInst Implementation
//===----------------------------------------------------------------------===//
void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
Value* const *Args, unsigned NumArgs) {
assert(NumOperands == 3+NumArgs && "NumOperands not set up?");
Op<-3>() = Fn;
Op<-2>() = IfNormal;
Op<-1>() = IfException;
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
FTy = FTy; // silence warning.
assert(((NumArgs == FTy->getNumParams()) ||
(FTy->isVarArg() && NumArgs > FTy->getNumParams())) &&
"Invoking a function with bad signature");
Use *OL = OperandList;
for (unsigned i = 0, e = NumArgs; i != e; i++) {
assert((i >= FTy->getNumParams() ||
FTy->getParamType(i) == Args[i]->getType()) &&
"Invoking a function with a bad signature!");
OL[i] = Args[i];
}
}
InvokeInst::InvokeInst(const InvokeInst &II)
: TerminatorInst(II.getType(), Instruction::Invoke,
OperandTraits<InvokeInst>::op_end(this)
- II.getNumOperands(),
II.getNumOperands()) {
setAttributes(II.getAttributes());
setCallingConv(II.getCallingConv());
Use *OL = OperandList, *InOL = II.OperandList;
for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
OL[i] = InOL[i];
SubclassOptionalData = II.SubclassOptionalData;
}
BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
return getSuccessor(idx);
}
unsigned InvokeInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
return setSuccessor(idx, B);
}
bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
if (AttributeList.paramHasAttr(i, attr))
return true;
if (const Function *F = getCalledFunction())
return F->paramHasAttr(i, attr);
return false;
}
void InvokeInst::addAttribute(unsigned i, Attributes attr) {
AttrListPtr PAL = getAttributes();
PAL = PAL.addAttr(i, attr);
setAttributes(PAL);
}
void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
AttrListPtr PAL = getAttributes();
PAL = PAL.removeAttr(i, attr);
setAttributes(PAL);
}
//===----------------------------------------------------------------------===//
// ReturnInst Implementation
//===----------------------------------------------------------------------===//
ReturnInst::ReturnInst(const ReturnInst &RI)
: TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this) -
RI.getNumOperands(),
RI.getNumOperands()) {
if (RI.getNumOperands())
Op<0>() = RI.Op<0>();
SubclassOptionalData = RI.SubclassOptionalData;
}
ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
: TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
InsertBefore) {
if (retVal)
Op<0>() = retVal;
}
ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
InsertAtEnd) {
if (retVal)
Op<0>() = retVal;
}
ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
}
unsigned ReturnInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
/// emit the vtable for the class in this translation unit.
void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
llvm_unreachable("ReturnInst has no successors!");
}
BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
llvm_unreachable("ReturnInst has no successors!");
return 0;
}
ReturnInst::~ReturnInst() {
}
//===----------------------------------------------------------------------===//
// UnwindInst Implementation
//===----------------------------------------------------------------------===//
UnwindInst::UnwindInst(LLVMContext &Context, Instruction *InsertBefore)
: TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
0, 0, InsertBefore) {
}
UnwindInst::UnwindInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
0, 0, InsertAtEnd) {
}
unsigned UnwindInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
llvm_unreachable("UnwindInst has no successors!");
}
BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
llvm_unreachable("UnwindInst has no successors!");
return 0;
}
//===----------------------------------------------------------------------===//
// UnreachableInst Implementation
//===----------------------------------------------------------------------===//
UnreachableInst::UnreachableInst(LLVMContext &Context,
Instruction *InsertBefore)
: TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
0, 0, InsertBefore) {
}
UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
0, 0, InsertAtEnd) {
}
unsigned UnreachableInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
llvm_unreachable("UnwindInst has no successors!");
}
BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
llvm_unreachable("UnwindInst has no successors!");
return 0;
}
//===----------------------------------------------------------------------===//
// BranchInst Implementation
//===----------------------------------------------------------------------===//
void BranchInst::AssertOK() {
if (isConditional())
assert(getCondition()->getType()->isIntegerTy(1) &&
"May only branch on boolean predicates!");
}
BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
: TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 1,
1, InsertBefore) {
assert(IfTrue != 0 && "Branch destination may not be null!");
Op<-1>() = IfTrue;
}
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
Instruction *InsertBefore)
: TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 3,
3, InsertBefore) {
Op<-1>() = IfTrue;
Op<-2>() = IfFalse;
Op<-3>() = Cond;
#ifndef NDEBUG
AssertOK();
#endif
}
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 1,
1, InsertAtEnd) {
assert(IfTrue != 0 && "Branch destination may not be null!");
Op<-1>() = IfTrue;
}
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 3,
3, InsertAtEnd) {
Op<-1>() = IfTrue;
Op<-2>() = IfFalse;
Op<-3>() = Cond;
#ifndef NDEBUG
AssertOK();
#endif
}
BranchInst::BranchInst(const BranchInst &BI) :
TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
BI.getNumOperands()) {
Op<-1>() = BI.Op<-1>();
if (BI.getNumOperands() != 1) {
assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
Op<-3>() = BI.Op<-3>();
Op<-2>() = BI.Op<-2>();
}
SubclassOptionalData = BI.SubclassOptionalData;
}
Use* Use::getPrefix() {
PointerIntPair<Use**, 2, PrevPtrTag> &PotentialPrefix(this[-1].Prev);
if (PotentialPrefix.getOpaqueValue())
return 0;
return reinterpret_cast<Use*>((char*)&PotentialPrefix + 1);
}
BranchInst::~BranchInst() {
if (NumOperands == 1) {
if (Use *Prefix = OperandList->getPrefix()) {
Op<-1>() = 0;
//
// mark OperandList to have a special value for scrutiny
// by baseclass destructors and operator delete
OperandList = Prefix;
} else {
NumOperands = 3;
OperandList = op_begin();
}
}
}
BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
return getSuccessor(idx);
}
unsigned BranchInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
setSuccessor(idx, B);
}
//===----------------------------------------------------------------------===//
// AllocaInst Implementation
//===----------------------------------------------------------------------===//
static Value *getAISize(LLVMContext &Context, Value *Amt) {
if (!Amt)
Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
else {
assert(!isa<BasicBlock>(Amt) &&
"Passed basic block into allocation size parameter! Use other ctor");
assert(Amt->getType()->isIntegerTy() &&
"Allocation array size is not an integer!");
}
return Amt;
}
AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
const Twine &Name, Instruction *InsertBefore)
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), ArraySize), InsertBefore) {
setAlignment(0);
assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
const Twine &Name, BasicBlock *InsertAtEnd)
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
setAlignment(0);
assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
Instruction *InsertBefore)
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), 0), InsertBefore) {
setAlignment(0);
assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
BasicBlock *InsertAtEnd)
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), 0), InsertAtEnd) {
setAlignment(0);
assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
const Twine &Name, Instruction *InsertBefore)
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), ArraySize), InsertBefore) {
setAlignment(Align);
assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
const Twine &Name, BasicBlock *InsertAtEnd)
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
setAlignment(Align);
assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
// Out of line virtual method, so the vtable, etc has a home.
AllocaInst::~AllocaInst() {
}
void AllocaInst::setAlignment(unsigned Align) {
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
setInstructionSubclassData(Log2_32(Align) + 1);
assert(getAlignment() == Align && "Alignment representation error!");
}
bool AllocaInst::isArrayAllocation() const {
if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
return CI->getZExtValue() != 1;
return true;
}
const Type *AllocaInst::getAllocatedType() const {
return getType()->getElementType();
}
/// isStaticAlloca - Return true if this alloca is in the entry block of the
/// function and is a constant size. If so, the code generator will fold it
/// into the prolog/epilog code, so it is basically free.
bool AllocaInst::isStaticAlloca() const {
// Must be constant size.
if (!isa<ConstantInt>(getArraySize())) return false;
// Must be in the entry block.
const BasicBlock *Parent = getParent();
return Parent == &Parent->getParent()->front();
}
//===----------------------------------------------------------------------===//
// LoadInst Implementation
//===----------------------------------------------------------------------===//
void LoadInst::AssertOK() {
assert(getOperand(0)->getType()->isPointerTy() &&
"Ptr must have pointer type.");
}
LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertBef) {
setVolatile(false);
setAlignment(0);
AssertOK();
setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertAE) {
setVolatile(false);
setAlignment(0);
AssertOK();
setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertBef) {
setVolatile(isVolatile);
setAlignment(0);
AssertOK();
setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
unsigned Align, Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertBef) {
setVolatile(isVolatile);
setAlignment(Align);
AssertOK();
setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
unsigned Align, BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertAE) {
setVolatile(isVolatile);
setAlignment(Align);
AssertOK();
setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertAE) {
setVolatile(isVolatile);
setAlignment(0);
AssertOK();
setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertBef) {
setVolatile(false);
setAlignment(0);
AssertOK();
if (Name && Name[0]) setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertAE) {
setVolatile(false);
setAlignment(0);
AssertOK();
if (Name && Name[0]) setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertBef) {
setVolatile(isVolatile);
setAlignment(0);
AssertOK();
if (Name && Name[0]) setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertAE) {
setVolatile(isVolatile);
setAlignment(0);
AssertOK();
if (Name && Name[0]) setName(Name);
}
void LoadInst::setAlignment(unsigned Align) {
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
((Log2_32(Align)+1)<<1));
}
//===----------------------------------------------------------------------===//
// StoreInst Implementation
//===----------------------------------------------------------------------===//
void StoreInst::AssertOK() {
assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
assert(getOperand(1)->getType()->isPointerTy() &&
"Ptr must have pointer type!");
assert(getOperand(0)->getType() ==
cast<PointerType>(getOperand(1)->getType())->getElementType()
&& "Ptr must be a pointer to Val type!");
}
StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertBefore) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(false);
setAlignment(0);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertAtEnd) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(false);
setAlignment(0);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
Instruction *InsertBefore)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertBefore) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(isVolatile);
setAlignment(0);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
unsigned Align, Instruction *InsertBefore)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertBefore) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(isVolatile);
setAlignment(Align);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
unsigned Align, BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertAtEnd) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(isVolatile);
setAlignment(Align);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertAtEnd) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(isVolatile);
setAlignment(0);
AssertOK();
}
void StoreInst::setAlignment(unsigned Align) {
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
((Log2_32(Align)+1) << 1));
}
//===----------------------------------------------------------------------===//
// GetElementPtrInst Implementation
//===----------------------------------------------------------------------===//
static unsigned retrieveAddrSpace(const Value *Val) {
return cast<PointerType>(Val->getType())->getAddressSpace();
}
void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
const Twine &Name) {
assert(NumOperands == 1+NumIdx && "NumOperands not initialized?");
Use *OL = OperandList;
OL[0] = Ptr;
for (unsigned i = 0; i != NumIdx; ++i)
OL[i+1] = Idx[i];
setName(Name);
}
void GetElementPtrInst::init(Value *Ptr, Value *Idx, const Twine &Name) {
assert(NumOperands == 2 && "NumOperands not initialized?");
Use *OL = OperandList;
OL[0] = Ptr;
OL[1] = Idx;
setName(Name);
}
GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
: Instruction(GEPI.getType(), GetElementPtr,
OperandTraits<GetElementPtrInst>::op_end(this)
- GEPI.getNumOperands(),
GEPI.getNumOperands()) {
Use *OL = OperandList;
Use *GEPIOL = GEPI.OperandList;
for (unsigned i = 0, E = NumOperands; i != E; ++i)
OL[i] = GEPIOL[i];
SubclassOptionalData = GEPI.SubclassOptionalData;
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
const Twine &Name, Instruction *InBe)
: Instruction(PointerType::get(
checkType(getIndexedType(Ptr->getType(),Idx)), retrieveAddrSpace(Ptr)),
GetElementPtr,
OperandTraits<GetElementPtrInst>::op_end(this) - 2,
2, InBe) {
init(Ptr, Idx, Name);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
const Twine &Name, BasicBlock *IAE)
: Instruction(PointerType::get(
checkType(getIndexedType(Ptr->getType(),Idx)),
retrieveAddrSpace(Ptr)),
GetElementPtr,
OperandTraits<GetElementPtrInst>::op_end(this) - 2,
2, IAE) {
init(Ptr, Idx, Name);
}
/// getIndexedType - Returns the type of the element that would be accessed with
/// a gep instruction with the specified parameters.
///
/// The Idxs pointer should point to a continuous piece of memory containing the
/// indices, either as Value* or uint64_t.
///
/// A null type is returned if the indices are invalid for the specified
/// pointer type.
///
template <typename IndexTy>
static const Type* getIndexedTypeInternal(const Type *Ptr, IndexTy const *Idxs,
unsigned NumIdx) {
const PointerType *PTy = dyn_cast<PointerType>(Ptr);
if (!PTy) return 0; // Type isn't a pointer type!
const Type *Agg = PTy->getElementType();
// Handle the special case of the empty set index set, which is always valid.
if (NumIdx == 0)
return Agg;
// If there is at least one index, the top level type must be sized, otherwise
// it cannot be 'stepped over'. We explicitly allow abstract types (those
// that contain opaque types) under the assumption that it will be resolved to
// a sane type later.
if (!Agg->isSized() && !Agg->isAbstract())
return 0;
unsigned CurIdx = 1;
for (; CurIdx != NumIdx; ++CurIdx) {
const CompositeType *CT = dyn_cast<CompositeType>(Agg);
if (!CT || CT->isPointerTy()) return 0;
IndexTy Index = Idxs[CurIdx];
if (!CT->indexValid(Index)) return 0;
Agg = CT->getTypeAtIndex(Index);
// If the new type forwards to another type, then it is in the middle
// of being refined to another type (and hence, may have dropped all
// references to what it was using before). So, use the new forwarded
// type.
if (const Type *Ty = Agg->getForwardedType())
Agg = Ty;
}
return CurIdx == NumIdx ? Agg : 0;
}
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
Value* const *Idxs,
unsigned NumIdx) {
return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
}
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
uint64_t const *Idxs,
unsigned NumIdx) {
return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
}
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
const PointerType *PTy = dyn_cast<PointerType>(Ptr);
if (!PTy) return 0; // Type isn't a pointer type!
// Check the pointer index.
if (!PTy->indexValid(Idx)) return 0;
return PTy->getElementType();
}
/// hasAllZeroIndices - Return true if all of the indices of this GEP are
/// zeros. If so, the result pointer and the first operand have the same
/// value, just potentially different types.
bool GetElementPtrInst::hasAllZeroIndices() const {
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
if (!CI->isZero()) return false;
} else {
return false;
}
}
return true;
}
/// hasAllConstantIndices - Return true if all of the indices of this GEP are
/// constant integers. If so, the result pointer and the first operand have
/// a constant offset between them.
bool GetElementPtrInst::hasAllConstantIndices() const {
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
if (!isa<ConstantInt>(getOperand(i)))
return false;
}
return true;
}
void GetElementPtrInst::setIsInBounds(bool B) {
cast<GEPOperator>(this)->setIsInBounds(B);
}
bool GetElementPtrInst::isInBounds() const {
return cast<GEPOperator>(this)->isInBounds();
}
//===----------------------------------------------------------------------===//
// ExtractElementInst Implementation
//===----------------------------------------------------------------------===//
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
const Twine &Name,
Instruction *InsertBef)
: Instruction(cast<VectorType>(Val->getType())->getElementType(),
ExtractElement,
OperandTraits<ExtractElementInst>::op_begin(this),
2, InsertBef) {
assert(isValidOperands(Val, Index) &&
"Invalid extractelement instruction operands!");
Op<0>() = Val;
Op<1>() = Index;
setName(Name);
}
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
const Twine &Name,
BasicBlock *InsertAE)
: Instruction(cast<VectorType>(Val->getType())->getElementType(),
ExtractElement,
OperandTraits<ExtractElementInst>::op_begin(this),
2, InsertAE) {
assert(isValidOperands(Val, Index) &&
"Invalid extractelement instruction operands!");
Op<0>() = Val;
Op<1>() = Index;
setName(Name);
}
bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
return false;
return true;
}
//===----------------------------------------------------------------------===//
// InsertElementInst Implementation
//===----------------------------------------------------------------------===//
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
const Twine &Name,
Instruction *InsertBef)
: Instruction(Vec->getType(), InsertElement,
OperandTraits<InsertElementInst>::op_begin(this),
3, InsertBef) {
assert(isValidOperands(Vec, Elt, Index) &&
"Invalid insertelement instruction operands!");
Op<0>() = Vec;
Op<1>() = Elt;
Op<2>() = Index;
setName(Name);
}
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
const Twine &Name,
BasicBlock *InsertAE)
: Instruction(Vec->getType(), InsertElement,
OperandTraits<InsertElementInst>::op_begin(this),
3, InsertAE) {
assert(isValidOperands(Vec, Elt, Index) &&
"Invalid insertelement instruction operands!");
Op<0>() = Vec;
Op<1>() = Elt;
Op<2>() = Index;
setName(Name);
}
bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
const Value *Index) {
if (!Vec->getType()->isVectorTy())
return false; // First operand of insertelement must be vector type.
if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
return false;// Second operand of insertelement must be vector element type.
if (!Index->getType()->isIntegerTy(32))
return false; // Third operand of insertelement must be i32.
return true;
}
//===----------------------------------------------------------------------===//
// ShuffleVectorInst Implementation
//===----------------------------------------------------------------------===//
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
const Twine &Name,
Instruction *InsertBefore)
: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
cast<VectorType>(Mask->getType())->getNumElements()),
ShuffleVector,
OperandTraits<ShuffleVectorInst>::op_begin(this),
OperandTraits<ShuffleVectorInst>::operands(this),
InsertBefore) {
assert(isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector instruction operands!");
Op<0>() = V1;
Op<1>() = V2;
Op<2>() = Mask;
setName(Name);
}
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
cast<VectorType>(Mask->getType())->getNumElements()),
ShuffleVector,
OperandTraits<ShuffleVectorInst>::op_begin(this),
OperandTraits<ShuffleVectorInst>::operands(this),
InsertAtEnd) {
assert(isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector instruction operands!");
Op<0>() = V1;
Op<1>() = V2;
Op<2>() = Mask;
setName(Name);
}
bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
const Value *Mask) {
if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
return false;
const VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
if (!isa<Constant>(Mask) || MaskTy == 0 ||
!MaskTy->getElementType()->isIntegerTy(32))
return false;
return true;
}
/// getMaskValue - Return the index from the shuffle mask for the specified
/// output result. This is either -1 if the element is undef or a number less
/// than 2*numelements.
int ShuffleVectorInst::getMaskValue(unsigned i) const {
const Constant *Mask = cast<Constant>(getOperand(2));
if (isa<UndefValue>(Mask)) return -1;
if (isa<ConstantAggregateZero>(Mask)) return 0;
const ConstantVector *MaskCV = cast<ConstantVector>(Mask);
assert(i < MaskCV->getNumOperands() && "Index out of range");
if (isa<UndefValue>(MaskCV->getOperand(i)))
return -1;
return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue();
}
//===----------------------------------------------------------------------===//
// InsertValueInst Class
//===----------------------------------------------------------------------===//
void InsertValueInst::init(Value *Agg, Value *Val, const unsigned *Idx,
unsigned NumIdx, const Twine &Name) {
assert(NumOperands == 2 && "NumOperands not initialized?");
Op<0>() = Agg;
Op<1>() = Val;
Indices.append(Idx, Idx + NumIdx);
setName(Name);
}
void InsertValueInst::init(Value *Agg, Value *Val, unsigned Idx,
const Twine &Name) {
assert(NumOperands == 2 && "NumOperands not initialized?");
Op<0>() = Agg;
Op<1>() = Val;
Indices.push_back(Idx);
setName(Name);
}
InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
: Instruction(IVI.getType(), InsertValue,
OperandTraits<InsertValueInst>::op_begin(this), 2),
Indices(IVI.Indices) {
Op<0>() = IVI.getOperand(0);
Op<1>() = IVI.getOperand(1);
SubclassOptionalData = IVI.SubclassOptionalData;
}
InsertValueInst::InsertValueInst(Value *Agg,
Value *Val,
unsigned Idx,
const Twine &Name,
Instruction *InsertBefore)
: Instruction(Agg->getType(), InsertValue,
OperandTraits<InsertValueInst>::op_begin(this),
2, InsertBefore) {
init(Agg, Val, Idx, Name);
}
InsertValueInst::InsertValueInst(Value *Agg,
Value *Val,
unsigned Idx,
const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(Agg->getType(), InsertValue,
OperandTraits<InsertValueInst>::op_begin(this),
2, InsertAtEnd) {
init(Agg, Val, Idx, Name);
}
//===----------------------------------------------------------------------===//
// ExtractValueInst Class
//===----------------------------------------------------------------------===//
void ExtractValueInst::init(const unsigned *Idx, unsigned NumIdx,
const Twine &Name) {
assert(NumOperands == 1 && "NumOperands not initialized?");
Indices.append(Idx, Idx + NumIdx);
setName(Name);
}
void ExtractValueInst::init(unsigned Idx, const Twine &Name) {
assert(NumOperands == 1 && "NumOperands not initialized?");
Indices.push_back(Idx);
setName(Name);
}
ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
: UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
Indices(EVI.Indices) {
SubclassOptionalData = EVI.SubclassOptionalData;
}
// getIndexedType - Returns the type of the element that would be extracted
// with an extractvalue instruction with the specified parameters.
//
// A null type is returned if the indices are invalid for the specified
// pointer type.
//
const Type* ExtractValueInst::getIndexedType(const Type *Agg,
const unsigned *Idxs,
unsigned NumIdx) {
unsigned CurIdx = 0;
for (; CurIdx != NumIdx; ++CurIdx) {
const CompositeType *CT = dyn_cast<CompositeType>(Agg);
if (!CT || CT->isPointerTy() || CT->isVectorTy()) return 0;
unsigned Index = Idxs[CurIdx];
if (!CT->indexValid(Index)) return 0;
Agg = CT->getTypeAtIndex(Index);
// If the new type forwards to another type, then it is in the middle
// of being refined to another type (and hence, may have dropped all
// references to what it was using before). So, use the new forwarded
// type.
if (const Type *Ty = Agg->getForwardedType())
Agg = Ty;
}
return CurIdx == NumIdx ? Agg : 0;
}
const Type* ExtractValueInst::getIndexedType(const Type *Agg,
unsigned Idx) {
return getIndexedType(Agg, &Idx, 1);
}
//===----------------------------------------------------------------------===//
// BinaryOperator Class
//===----------------------------------------------------------------------===//
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
const Type *Ty, const Twine &Name,
Instruction *InsertBefore)
: Instruction(Ty, iType,
OperandTraits<BinaryOperator>::op_begin(this),
OperandTraits<BinaryOperator>::operands(this),
InsertBefore) {
Op<0>() = S1;
Op<1>() = S2;
init(iType);
setName(Name);
}
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
const Type *Ty, const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(Ty, iType,
OperandTraits<BinaryOperator>::op_begin(this),
OperandTraits<BinaryOperator>::operands(this),
InsertAtEnd) {
Op<0>() = S1;
Op<1>() = S2;
init(iType);
setName(Name);
}
void BinaryOperator::init(BinaryOps iType) {
Value *LHS = getOperand(0), *RHS = getOperand(1);
LHS = LHS; RHS = RHS; // Silence warnings.
assert(LHS->getType() == RHS->getType() &&
"Binary operator operand types must match!");
#ifndef NDEBUG
switch (iType) {
case Add: case Sub:
case Mul:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert(getType()->isIntOrIntVectorTy() &&
"Tried to create an integer operation on a non-integer type!");
break;
case FAdd: case FSub:
case FMul:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert(getType()->isFPOrFPVectorTy() &&
"Tried to create a floating-point operation on a "
"non-floating-point type!");
break;
case UDiv:
case SDiv:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
"Incorrect operand type (not integer) for S/UDIV");
break;
case FDiv:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert(getType()->isFPOrFPVectorTy() &&
"Incorrect operand type (not floating point) for FDIV");
break;
case URem:
case SRem:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
"Incorrect operand type (not integer) for S/UREM");
break;
case FRem:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert(getType()->isFPOrFPVectorTy() &&
"Incorrect operand type (not floating point) for FREM");
break;
case Shl:
case LShr:
case AShr:
assert(getType() == LHS->getType() &&
"Shift operation should return same type as operands!");
assert((getType()->isIntegerTy() ||
(getType()->isVectorTy() &&
cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
"Tried to create a shift operation on a non-integral type!");
break;
case And: case Or:
case Xor:
assert(getType() == LHS->getType() &&
"Logical operation should return same type as operands!");
assert((getType()->isIntegerTy() ||
(getType()->isVectorTy() &&
cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
"Tried to create a logical operation on a non-integral type!");
break;
default:
break;
}
#endif
}
BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
const Twine &Name,
Instruction *InsertBefore) {
assert(S1->getType() == S2->getType() &&
"Cannot create binary operator with two operands of differing type!");
return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
const Twine &Name,
BasicBlock *InsertAtEnd) {
BinaryOperator *Res = Create(Op, S1, S2, Name);
InsertAtEnd->getInstList().push_back(Res);
return Res;
}
BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::Sub,
zero, Op,
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::Sub,
zero, Op,
Op->getType(), Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
}
BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
}
BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::FSub,
zero, Op,
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::FSub,
zero, Op,
Op->getType(), Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Constant *C;
if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
C = Constant::getAllOnesValue(PTy->getElementType());
C = ConstantVector::get(
std::vector<Constant*>(PTy->getNumElements(), C));
} else {
C = Constant::getAllOnesValue(Op->getType());
}
return new BinaryOperator(Instruction::Xor, Op, C,
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Constant *AllOnes;
if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
// Create a vector of all ones values.
Constant *Elt = Constant::getAllOnesValue(PTy->getElementType());
AllOnes = ConstantVector::get(
std::vector<Constant*>(PTy->getNumElements(), Elt));
} else {
AllOnes = Constant::getAllOnesValue(Op->getType());
}
return new BinaryOperator(Instruction::Xor, Op, AllOnes,
Op->getType(), Name, InsertAtEnd);
}
// isConstantAllOnes - Helper function for several functions below
static inline bool isConstantAllOnes(const Value *V) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
return CI->isAllOnesValue();
if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
return CV->isAllOnesValue();
return false;
}
bool BinaryOperator::isNeg(const Value *V) {
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
if (Bop->getOpcode() == Instruction::Sub)
if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
return C->isNegativeZeroValue();
return false;
}
bool BinaryOperator::isFNeg(const Value *V) {
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
if (Bop->getOpcode() == Instruction::FSub)
if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
return C->isNegativeZeroValue();
return false;
}
bool BinaryOperator::isNot(const Value *V) {
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
return (Bop->getOpcode() == Instruction::Xor &&
(isConstantAllOnes(Bop->getOperand(1)) ||
isConstantAllOnes(Bop->getOperand(0))));
return false;
}
Value *BinaryOperator::getNegArgument(Value *BinOp) {
return cast<BinaryOperator>(BinOp)->getOperand(1);
}
const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
return getNegArgument(const_cast<Value*>(BinOp));
}
Value *BinaryOperator::getFNegArgument(Value *BinOp) {
return cast<BinaryOperator>(BinOp)->getOperand(1);
}
const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
return getFNegArgument(const_cast<Value*>(BinOp));
}
Value *BinaryOperator::getNotArgument(Value *BinOp) {
assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
BinaryOperator *BO = cast<BinaryOperator>(BinOp);
Value *Op0 = BO->getOperand(0);
Value *Op1 = BO->getOperand(1);
if (isConstantAllOnes(Op0)) return Op1;
assert(isConstantAllOnes(Op1));
return Op0;
}
const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
return getNotArgument(const_cast<Value*>(BinOp));
}
// swapOperands - Exchange the two operands to this instruction. This
// instruction is safe to use on any binary instruction and does not
// modify the semantics of the instruction. If the instruction is
// order dependent (SetLT f.e.) the opcode is changed.
//
bool BinaryOperator::swapOperands() {
if (!isCommutative())
return true; // Can't commute operands
Op<0>().swap(Op<1>());
return false;
}
void BinaryOperator::setHasNoUnsignedWrap(bool b) {
cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
}
void BinaryOperator::setHasNoSignedWrap(bool b) {
cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
}
void BinaryOperator::setIsExact(bool b) {
cast<SDivOperator>(this)->setIsExact(b);
}
bool BinaryOperator::hasNoUnsignedWrap() const {
return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
}
bool BinaryOperator::hasNoSignedWrap() const {
return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
}
bool BinaryOperator::isExact() const {
return cast<SDivOperator>(this)->isExact();
}
//===----------------------------------------------------------------------===//
// CastInst Class
//===----------------------------------------------------------------------===//
// Just determine if this cast only deals with integral->integral conversion.
bool CastInst::isIntegerCast() const {
switch (getOpcode()) {
default: return false;
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::Trunc:
return true;
case Instruction::BitCast:
return getOperand(0)->getType()->isIntegerTy() &&
getType()->isIntegerTy();
}
}
bool CastInst::isLosslessCast() const {
// Only BitCast can be lossless, exit fast if we're not BitCast
if (getOpcode() != Instruction::BitCast)
return false;
// Identity cast is always lossless
const Type* SrcTy = getOperand(0)->getType();
const Type* DstTy = getType();
if (SrcTy == DstTy)
return true;
// Pointer to pointer is always lossless.
if (SrcTy->isPointerTy())
return DstTy->isPointerTy();
return false; // Other types have no identity values
}
/// This function determines if the CastInst does not require any bits to be
/// changed in order to effect the cast. Essentially, it identifies cases where
/// no code gen is necessary for the cast, hence the name no-op cast. For
/// example, the following are all no-op casts:
/// # bitcast i32* %x to i8*
/// # bitcast <2 x i32> %x to <4 x i16>
/// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
/// @brief Determine if the described cast is a no-op.
bool CastInst::isNoopCast(Instruction::CastOps Opcode,
const Type *SrcTy,
const Type *DestTy,
const Type *IntPtrTy) {
switch (Opcode) {
default:
assert(!"Invalid CastOp");
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
return false; // These always modify bits
case Instruction::BitCast:
return true; // BitCast never modifies bits.
case Instruction::PtrToInt:
return IntPtrTy->getScalarSizeInBits() ==
DestTy->getScalarSizeInBits();
case Instruction::IntToPtr:
return IntPtrTy->getScalarSizeInBits() ==
SrcTy->getScalarSizeInBits();
}
}
/// @brief Determine if a cast is a no-op.
bool CastInst::isNoopCast(const Type *IntPtrTy) const {
return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
}
/// This function determines if a pair of casts can be eliminated and what
/// opcode should be used in the elimination. This assumes that there are two
/// instructions like this:
/// * %F = firstOpcode SrcTy %x to MidTy
/// * %S = secondOpcode MidTy %F to DstTy
/// The function returns a resultOpcode so these two casts can be replaced with:
/// * %Replacement = resultOpcode %SrcTy %x to DstTy
/// If no such cast is permited, the function returns 0.
unsigned CastInst::isEliminableCastPair(
Instruction::CastOps firstOp, Instruction::CastOps secondOp,
const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
{
// Define the 144 possibilities for these two cast instructions. The values
// in this matrix determine what to do in a given situation and select the
// case in the switch below. The rows correspond to firstOp, the columns
// correspond to secondOp. In looking at the table below, keep in mind
// the following cast properties:
//
// Size Compare Source Destination
// Operator Src ? Size Type Sign Type Sign
// -------- ------------ ------------------- ---------------------
// TRUNC > Integer Any Integral Any
// ZEXT < Integral Unsigned Integer Any
// SEXT < Integral Signed Integer Any
// FPTOUI n/a FloatPt n/a Integral Unsigned
// FPTOSI n/a FloatPt n/a Integral Signed
// UITOFP n/a Integral Unsigned FloatPt n/a
// SITOFP n/a Integral Signed FloatPt n/a
// FPTRUNC > FloatPt n/a FloatPt n/a
// FPEXT < FloatPt n/a FloatPt n/a
// PTRTOINT n/a Pointer n/a Integral Unsigned
// INTTOPTR n/a Integral Unsigned Pointer n/a
// BITCAST = FirstClass n/a FirstClass n/a
//
// NOTE: some transforms are safe, but we consider them to be non-profitable.
// For example, we could merge "fptoui double to i32" + "zext i32 to i64",
// into "fptoui double to i64", but this loses information about the range
// of the produced value (we no longer know the top-part is all zeros).
// Further this conversion is often much more expensive for typical hardware,
// and causes issues when building libgcc. We disallow fptosi+sext for the
// same reason.
const unsigned numCastOps =
Instruction::CastOpsEnd - Instruction::CastOpsBegin;
static const uint8_t CastResults[numCastOps][numCastOps] = {
// T F F U S F F P I B -+
// R Z S P P I I T P 2 N T |
// U E E 2 2 2 2 R E I T C +- secondOp
// N X X U S F F N X N 2 V |
// C T T I I P P C T T P T -+
{ 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
{ 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
{ 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
{ 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
{ 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
{ 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
{ 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
{ 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
{ 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
{ 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
{ 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
{ 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
};
int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
[secondOp-Instruction::CastOpsBegin];
switch (ElimCase) {
case 0:
// categorically disallowed
return 0;
case 1:
// allowed, use first cast's opcode
return firstOp;
case 2:
// allowed, use second cast's opcode
return secondOp;
case 3:
// no-op cast in second op implies firstOp as long as the DestTy
// is integer and we are not converting between a vector and a
// non vector type.
if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
return firstOp;
return 0;
case 4:
// no-op cast in second op implies firstOp as long as the DestTy
// is floating point.
if (DstTy->isFloatingPointTy())
return firstOp;
return 0;
case 5:
// no-op cast in first op implies secondOp as long as the SrcTy
// is an integer.
if (SrcTy->isIntegerTy())
return secondOp;
return 0;
case 6:
// no-op cast in first op implies secondOp as long as the SrcTy
// is a floating point.
if (SrcTy->isFloatingPointTy())
return secondOp;
return 0;
case 7: {
// ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
if (!IntPtrTy)
return 0;
unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
unsigned MidSize = MidTy->getScalarSizeInBits();
if (MidSize >= PtrSize)
return Instruction::BitCast;
return 0;
}
case 8: {
// ext, trunc -> bitcast, if the SrcTy and DstTy are same size
// ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
// ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
unsigned SrcSize = SrcTy->getScalarSizeInBits();
unsigned DstSize = DstTy->getScalarSizeInBits();
if (SrcSize == DstSize)
return Instruction::BitCast;
else if (SrcSize < DstSize)
return firstOp;
return secondOp;
}
case 9: // zext, sext -> zext, because sext can't sign extend after zext
return Instruction::ZExt;
case 10:
// fpext followed by ftrunc is allowed if the bit size returned to is
// the same as the original, in which case its just a bitcast
if (SrcTy == DstTy)
return Instruction::BitCast;
return 0; // If the types are not the same we can't eliminate it.
case 11:
// bitcast followed by ptrtoint is allowed as long as the bitcast
// is a pointer to pointer cast.
if (SrcTy->isPointerTy() && MidTy->isPointerTy())
return secondOp;
return 0;
case 12:
// inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
if (MidTy->isPointerTy() && DstTy->isPointerTy())
return firstOp;
return 0;
case 13: {
// inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
if (!IntPtrTy)
return 0;
unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
unsigned SrcSize = SrcTy->getScalarSizeInBits();
unsigned DstSize = DstTy->getScalarSizeInBits();
if (SrcSize <= PtrSize && SrcSize == DstSize)
return Instruction::BitCast;
return 0;
}
case 99:
// cast combination can't happen (error in input). This is for all cases
// where the MidTy is not the same for the two cast instructions.
assert(!"Invalid Cast Combination");
return 0;
default:
assert(!"Error in CastResults table!!!");
return 0;
}
return 0;
}
CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
const Twine &Name, Instruction *InsertBefore) {
// Construct and return the appropriate CastInst subclass
switch (op) {
case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
default:
assert(!"Invalid opcode provided");
}
return 0;
}
CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
const Twine &Name, BasicBlock *InsertAtEnd) {
// Construct and return the appropriate CastInst subclass
switch (op) {
case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
default:
assert(!"Invalid opcode provided");
}
return 0;
}
CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
const Twine &Name,
Instruction *InsertBefore) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
}
CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
const Twine &Name,
BasicBlock *InsertAtEnd) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
}
CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
const Twine &Name,
Instruction *InsertBefore) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
}
CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
const Twine &Name,
BasicBlock *InsertAtEnd) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
}
CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
const Twine &Name,
Instruction *InsertBefore) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
}
CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
const Twine &Name,
BasicBlock *InsertAtEnd) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
}
CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
const Twine &Name,
BasicBlock *InsertAtEnd) {
assert(S->getType()->isPointerTy() && "Invalid cast");
assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
"Invalid cast");
if (Ty->isIntegerTy())
return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
}
/// @brief Create a BitCast or a PtrToInt cast instruction
CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
const Twine &Name,
Instruction *InsertBefore) {
assert(S->getType()->isPointerTy() && "Invalid cast");
assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
"Invalid cast");
if (Ty->isIntegerTy())
return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
}
CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
bool isSigned, const Twine &Name,
Instruction *InsertBefore) {
assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
"Invalid integer cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
Instruction::CastOps opcode =
(SrcBits == DstBits ? Instruction::BitCast :
(SrcBits > DstBits ? Instruction::Trunc :
(isSigned ? Instruction::SExt : Instruction::ZExt)));
return Create(opcode, C, Ty, Name, InsertBefore);
}
CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
bool isSigned, const Twine &Name,
BasicBlock *InsertAtEnd) {
assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
"Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
Instruction::CastOps opcode =
(SrcBits == DstBits ? Instruction::BitCast :
(SrcBits > DstBits ? Instruction::Trunc :
(isSigned ? Instruction::SExt : Instruction::ZExt)));
return Create(opcode, C, Ty, Name, InsertAtEnd);
}
CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
const Twine &Name,
Instruction *InsertBefore) {
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
"Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
Instruction::CastOps opcode =
(SrcBits == DstBits ? Instruction::BitCast :
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
return Create(opcode, C, Ty, Name, InsertBefore);
}
CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
const Twine &Name,
BasicBlock *InsertAtEnd) {
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
"Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
Instruction::CastOps opcode =
(SrcBits == DstBits ? Instruction::BitCast :
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
return Create(opcode, C, Ty, Name, InsertAtEnd);
}
// Check whether it is valid to call getCastOpcode for these types.
// This routine must be kept in sync with getCastOpcode.
bool CastInst::isCastable(const Type *SrcTy, const Type *DestTy) {
if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
return false;
if (SrcTy == DestTy)
return true;
// Get the bit sizes, we'll need these
unsigned SrcBits = SrcTy->getScalarSizeInBits(); // 0 for ptr
unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
// Run through the possibilities ...
if (DestTy->isIntegerTy()) { // Casting to integral
if (SrcTy->isIntegerTy()) { // Casting from integral
return true;
} else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
return true;
} else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
// Casting from vector
return DestBits == PTy->getBitWidth();
} else { // Casting from something else
return SrcTy->isPointerTy();
}
} else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
if (SrcTy->isIntegerTy()) { // Casting from integral
return true;
} else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
return true;
} else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
// Casting from vector
return DestBits == PTy->getBitWidth();
} else { // Casting from something else
return false;
}
} else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
// Casting to vector
if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
// Casting from vector
return DestPTy->getBitWidth() == SrcPTy->getBitWidth();
} else { // Casting from something else
return DestPTy->getBitWidth() == SrcBits;
}
} else if (DestTy->isPointerTy()) { // Casting to pointer
if (SrcTy->isPointerTy()) { // Casting from pointer
return true;
} else if (SrcTy->isIntegerTy()) { // Casting from integral
return true;
} else { // Casting from something else
return false;
}
} else { // Casting to something else
return false;
}
}
// Provide a way to get a "cast" where the cast opcode is inferred from the
// types and size of the operand. This, basically, is a parallel of the
// logic in the castIsValid function below. This axiom should hold:
// castIsValid( getCastOpcode(Val, Ty), Val, Ty)
// should not assert in castIsValid. In other words, this produces a "correct"
// casting opcode for the arguments passed to it.
// This routine must be kept in sync with isCastable.
Instruction::CastOps
CastInst::getCastOpcode(
const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
// Get the bit sizes, we'll need these
const Type *SrcTy = Src->getType();
unsigned SrcBits = SrcTy->getScalarSizeInBits(); // 0 for ptr
unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
"Only first class types are castable!");
// Run through the possibilities ...
if (DestTy->isIntegerTy()) { // Casting to integral
if (SrcTy->isIntegerTy()) { // Casting from integral
if (DestBits < SrcBits)
return Trunc; // int -> smaller int
else if (DestBits > SrcBits) { // its an extension
if (SrcIsSigned)
return SExt; // signed -> SEXT
else
return ZExt; // unsigned -> ZEXT
} else {
return BitCast; // Same size, No-op cast
}
} else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
if (DestIsSigned)
return FPToSI; // FP -> sint
else
return FPToUI; // FP -> uint
} else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
assert(DestBits == PTy->getBitWidth() &&
"Casting vector to integer of different width");
PTy = NULL;
return BitCast; // Same size, no-op cast
} else {
assert(SrcTy->isPointerTy() &&
"Casting from a value that is not first-class type");
return PtrToInt; // ptr -> int
}
} else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
if (SrcTy->isIntegerTy()) { // Casting from integral
if (SrcIsSigned)
return SIToFP; // sint -> FP
else
return UIToFP; // uint -> FP
} else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
if (DestBits < SrcBits) {
return FPTrunc; // FP -> smaller FP
} else if (DestBits > SrcBits) {
return FPExt; // FP -> larger FP
} else {
return BitCast; // same size, no-op cast
}
} else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
assert(DestBits == PTy->getBitWidth() &&
"Casting vector to floating point of different width");
PTy = NULL;
return BitCast; // same size, no-op cast
} else {
llvm_unreachable("Casting pointer or non-first class to float");
}
} else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
"Casting vector to vector of different widths");
SrcPTy = NULL;
return BitCast; // vector -> vector
} else if (DestPTy->getBitWidth() == SrcBits) {
return BitCast; // float/int -> vector
} else {
assert(!"Illegal cast to vector (wrong type or size)");
}
} else if (DestTy->isPointerTy()) {
if (SrcTy->isPointerTy()) {
return BitCast; // ptr -> ptr
} else if (SrcTy->isIntegerTy()) {
return IntToPtr; // int -> ptr
} else {
assert(!"Casting pointer to other than pointer or int");
}
} else {
assert(!"Casting to type that is not first-class");
}
// If we fall through to here we probably hit an assertion cast above
// and assertions are not turned on. Anything we return is an error, so
// BitCast is as good a choice as any.
return BitCast;
}
//===----------------------------------------------------------------------===//
// CastInst SubClass Constructors
//===----------------------------------------------------------------------===//
/// Check that the construction parameters for a CastInst are correct. This
/// could be broken out into the separate constructors but it is useful to have
/// it in one place and to eliminate the redundant code for getting the sizes
/// of the types involved.
bool
CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
// Check for type sanity on the arguments
const Type *SrcTy = S->getType();
if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
SrcTy->isAggregateType() || DstTy->isAggregateType())
return false;
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DstBitSize = DstTy->getScalarSizeInBits();
// Switch on the opcode provided
switch (op) {
default: return false; // This is an input error
case Instruction::Trunc:
return SrcTy->isIntOrIntVectorTy() &&
DstTy->isIntOrIntVectorTy()&& SrcBitSize > DstBitSize;
case Instruction::ZExt:
return SrcTy->isIntOrIntVectorTy() &&
DstTy->isIntOrIntVectorTy()&& SrcBitSize < DstBitSize;
case Instruction::SExt:
return SrcTy->isIntOrIntVectorTy() &&
DstTy->isIntOrIntVectorTy()&& SrcBitSize < DstBitSize;
case Instruction::FPTrunc:
return SrcTy->isFPOrFPVectorTy() &&
DstTy->isFPOrFPVectorTy() &&
SrcBitSize > DstBitSize;
case Instruction::FPExt:
return SrcTy->isFPOrFPVectorTy() &&
DstTy->isFPOrFPVectorTy() &&
SrcBitSize < DstBitSize;
case Instruction::UIToFP:
case Instruction::SIToFP:
if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
return SVTy->getElementType()->isIntOrIntVectorTy() &&
DVTy->getElementType()->isFPOrFPVectorTy() &&
SVTy->getNumElements() == DVTy->getNumElements();
}
}
return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy();
case Instruction::FPToUI:
case Instruction::FPToSI:
if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
return SVTy->getElementType()->isFPOrFPVectorTy() &&
DVTy->getElementType()->isIntOrIntVectorTy() &&
SVTy->getNumElements() == DVTy->getNumElements();
}
}
return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy();
case Instruction::PtrToInt:
return SrcTy->isPointerTy() && DstTy->isIntegerTy();
case Instruction::IntToPtr:
return SrcTy->isIntegerTy() && DstTy->isPointerTy();
case Instruction::BitCast:
// BitCast implies a no-op cast of type only. No bits change.
// However, you can't cast pointers to anything but pointers.
if (SrcTy->isPointerTy() != DstTy->isPointerTy())
return false;
// Now we know we're not dealing with a pointer/non-pointer mismatch. In all
// these cases, the cast is okay if the source and destination bit widths
// are identical.
return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
}
}
TruncInst::TruncInst(
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
}
TruncInst::TruncInst(
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
}
ZExtInst::ZExtInst(
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
}
ZExtInst::ZExtInst(
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
}
SExtInst::SExtInst(
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, SExt, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
}
SExtInst::SExtInst(
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
}
FPTruncInst::FPTruncInst(
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
}
FPTruncInst::FPTruncInst(
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
}
FPExtInst::FPExtInst(
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
}
FPExtInst::FPExtInst(
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
}
UIToFPInst::UIToFPInst(
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
}
UIToFPInst::UIToFPInst(
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
}
SIToFPInst::SIToFPInst(
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
}
SIToFPInst::SIToFPInst(
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
}
FPToUIInst::FPToUIInst(
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
}
FPToUIInst::FPToUIInst(
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
}
FPToSIInst::FPToSIInst(
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
}
FPToSIInst::FPToSIInst(
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
}
PtrToIntInst::PtrToIntInst(
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
}
PtrToIntInst::PtrToIntInst(
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
}
IntToPtrInst::IntToPtrInst(
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
}
IntToPtrInst::IntToPtrInst(
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
}
BitCastInst::BitCastInst(
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
}
BitCastInst::BitCastInst(
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
}
//===----------------------------------------------------------------------===//
// CmpInst Classes
//===----------------------------------------------------------------------===//
void CmpInst::Anchor() const {}
CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
Value *LHS, Value *RHS, const Twine &Name,
Instruction *InsertBefore)
: Instruction(ty, op,
OperandTraits<CmpInst>::op_begin(this),
OperandTraits<CmpInst>::operands(this),
InsertBefore) {
Op<0>() = LHS;
Op<1>() = RHS;
setPredicate((Predicate)predicate);
setName(Name);
}
CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
Value *LHS, Value *RHS, const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(ty, op,
OperandTraits<CmpInst>::op_begin(this),
OperandTraits<CmpInst>::operands(this),
InsertAtEnd) {
Op<0>() = LHS;
Op<1>() = RHS;
setPredicate((Predicate)predicate);
setName(Name);
}
CmpInst *
CmpInst::Create(OtherOps Op, unsigned short predicate,
Value *S1, Value *S2,
const Twine &Name, Instruction *InsertBefore) {
if (Op == Instruction::ICmp) {
if (InsertBefore)
return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
S1, S2, Name);
else
return new ICmpInst(CmpInst::Predicate(predicate),
S1, S2, Name);
}
if (InsertBefore)
return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
S1, S2, Name);
else
return new FCmpInst(CmpInst::Predicate(predicate),
S1, S2, Name);
}
CmpInst *
CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
const Twine &Name, BasicBlock *InsertAtEnd) {
if (Op == Instruction::ICmp) {
return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
S1, S2, Name);
}
return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
S1, S2, Name);
}
void CmpInst::swapOperands() {
if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
IC->swapOperands();
else
cast<FCmpInst>(this)->swapOperands();
}
bool CmpInst::isCommutative() {
if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
return IC->isCommutative();
return cast<FCmpInst>(this)->isCommutative();
}
bool CmpInst::isEquality() {
if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
return IC->isEquality();
return cast<FCmpInst>(this)->isEquality();
}
CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
switch (pred) {
default: assert(!"Unknown cmp predicate!");
case ICMP_EQ: return ICMP_NE;
case ICMP_NE: return ICMP_EQ;
case ICMP_UGT: return ICMP_ULE;
case ICMP_ULT: return ICMP_UGE;
case ICMP_UGE: return ICMP_ULT;
case ICMP_ULE: return ICMP_UGT;
case ICMP_SGT: return ICMP_SLE;
case ICMP_SLT: return ICMP_SGE;
case ICMP_SGE: return ICMP_SLT;
case ICMP_SLE: return ICMP_SGT;
case FCMP_OEQ: return FCMP_UNE;
case FCMP_ONE: return FCMP_UEQ;
case FCMP_OGT: return FCMP_ULE;
case FCMP_OLT: return FCMP_UGE;
case FCMP_OGE: return FCMP_ULT;
case FCMP_OLE: return FCMP_UGT;
case FCMP_UEQ: return FCMP_ONE;
case FCMP_UNE: return FCMP_OEQ;
case FCMP_UGT: return FCMP_OLE;
case FCMP_ULT: return FCMP_OGE;
case FCMP_UGE: return FCMP_OLT;
case FCMP_ULE: return FCMP_OGT;
case FCMP_ORD: return FCMP_UNO;
case FCMP_UNO: return FCMP_ORD;
case FCMP_TRUE: return FCMP_FALSE;
case FCMP_FALSE: return FCMP_TRUE;
}
}
ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
switch (pred) {
default: assert(! "Unknown icmp predicate!");
case ICMP_EQ: case ICMP_NE:
case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
return pred;
case ICMP_UGT: return ICMP_SGT;
case ICMP_ULT: return ICMP_SLT;
case ICMP_UGE: return ICMP_SGE;
case ICMP_ULE: return ICMP_SLE;
}
}
ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
switch (pred) {
default: assert(! "Unknown icmp predicate!");
case ICMP_EQ: case ICMP_NE:
case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
return pred;
case ICMP_SGT: return ICMP_UGT;
case ICMP_SLT: return ICMP_ULT;
case ICMP_SGE: return ICMP_UGE;
case ICMP_SLE: return ICMP_ULE;
}
}
/// Initialize a set of values that all satisfy the condition with C.
///
ConstantRange
ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
APInt Lower(C);
APInt Upper(C);
uint32_t BitWidth = C.getBitWidth();
switch (pred) {
default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
case ICmpInst::ICMP_EQ: Upper++; break;
case ICmpInst::ICMP_NE: Lower++; break;
case ICmpInst::ICMP_ULT:
Lower = APInt::getMinValue(BitWidth);
// Check for an empty-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/false);
break;
case ICmpInst::ICMP_SLT:
Lower = APInt::getSignedMinValue(BitWidth);
// Check for an empty-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/false);
break;
case ICmpInst::ICMP_UGT:
Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
// Check for an empty-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/false);
break;
case ICmpInst::ICMP_SGT:
Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
// Check for an empty-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/false);
break;
case ICmpInst::ICMP_ULE:
Lower = APInt::getMinValue(BitWidth); Upper++;
// Check for a full-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/true);
break;
case ICmpInst::ICMP_SLE:
Lower = APInt::getSignedMinValue(BitWidth); Upper++;
// Check for a full-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/true);
break;
case ICmpInst::ICMP_UGE:
Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
// Check for a full-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/true);
break;
case ICmpInst::ICMP_SGE:
Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
// Check for a full-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/true);
break;
}
return ConstantRange(Lower, Upper);
}
CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
switch (pred) {
default: assert(!"Unknown cmp predicate!");
case ICMP_EQ: case ICMP_NE:
return pred;
case ICMP_SGT: return ICMP_SLT;
case ICMP_SLT: return ICMP_SGT;
case ICMP_SGE: return ICMP_SLE;
case ICMP_SLE: return ICMP_SGE;
case ICMP_UGT: return ICMP_ULT;
case ICMP_ULT: return ICMP_UGT;
case ICMP_UGE: return ICMP_ULE;
case ICMP_ULE: return ICMP_UGE;
case FCMP_FALSE: case FCMP_TRUE:
case FCMP_OEQ: case FCMP_ONE:
case FCMP_UEQ: case FCMP_UNE:
case FCMP_ORD: case FCMP_UNO:
return pred;
case FCMP_OGT: return FCMP_OLT;
case FCMP_OLT: return FCMP_OGT;
case FCMP_OGE: return FCMP_OLE;
case FCMP_OLE: return FCMP_OGE;
case FCMP_UGT: return FCMP_ULT;
case FCMP_ULT: return FCMP_UGT;
case FCMP_UGE: return FCMP_ULE;
case FCMP_ULE: return FCMP_UGE;
}
}
bool CmpInst::isUnsigned(unsigned short predicate) {
switch (predicate) {
default: return false;
case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE: return true;
}
}
bool CmpInst::isSigned(unsigned short predicate) {
switch (predicate) {
default: return false;
case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE: return true;
}
}
bool CmpInst::isOrdered(unsigned short predicate) {
switch (predicate) {
default: return false;
case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
case FCmpInst::FCMP_ORD: return true;
}
}
bool CmpInst::isUnordered(unsigned short predicate) {
switch (predicate) {
default: return false;
case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
case FCmpInst::FCMP_UNO: return true;
}
}
bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
switch(predicate) {
default: return false;
case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
}
}
bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
switch(predicate) {
case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
default: return false;
}
}
//===----------------------------------------------------------------------===//
// SwitchInst Implementation
//===----------------------------------------------------------------------===//
void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
assert(Value && Default);
ReservedSpace = 2+NumCases*2;
NumOperands = 2;
OperandList = allocHungoffUses(ReservedSpace);
OperandList[0] = Value;
OperandList[1] = Default;
}
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
/// switch on and a default destination. The number of additional cases can
/// be specified here to make memory allocation more efficient. This
/// constructor can also autoinsert before another instruction.
SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
Instruction *InsertBefore)
: TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
0, 0, InsertBefore) {
init(Value, Default, NumCases);
}
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
/// switch on and a default destination. The number of additional cases can
/// be specified here to make memory allocation more efficient. This
/// constructor also autoinserts at the end of the specified BasicBlock.
SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
0, 0, InsertAtEnd) {
init(Value, Default, NumCases);
}
SwitchInst::SwitchInst(const SwitchInst &SI)
: TerminatorInst(Type::getVoidTy(SI.getContext()), Instruction::Switch,
allocHungoffUses(SI.getNumOperands()), SI.getNumOperands()) {
Use *OL = OperandList, *InOL = SI.OperandList;
for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
OL[i] = InOL[i];
OL[i+1] = InOL[i+1];
}
SubclassOptionalData = SI.SubclassOptionalData;
}
SwitchInst::~SwitchInst() {
dropHungoffUses(OperandList);
}
/// addCase - Add an entry to the switch instruction...
///
void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
unsigned OpNo = NumOperands;
if (OpNo+2 > ReservedSpace)
resizeOperands(0); // Get more space!
// Initialize some new operands.
assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
NumOperands = OpNo+2;
OperandList[OpNo] = OnVal;
OperandList[OpNo+1] = Dest;
}
/// removeCase - This method removes the specified successor from the switch
/// instruction. Note that this cannot be used to remove the default
/// destination (successor #0).
///
void SwitchInst::removeCase(unsigned idx) {
assert(idx != 0 && "Cannot remove the default case!");
assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
unsigned NumOps = getNumOperands();
Use *OL = OperandList;
// Move everything after this operand down.
//
// FIXME: we could just swap with the end of the list, then erase. However,
// client might not expect this to happen. The code as it is thrashes the
// use/def lists, which is kinda lame.
for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
OL[i-2] = OL[i];
OL[i-2+1] = OL[i+1];
}
// Nuke the last value.
OL[NumOps-2].set(0);
OL[NumOps-2+1].set(0);
NumOperands = NumOps-2;
}
/// resizeOperands - resize operands - This adjusts the length of the operands
/// list according to the following behavior:
/// 1. If NumOps == 0, grow the operand list in response to a push_back style
/// of operation. This grows the number of ops by 3 times.
/// 2. If NumOps > NumOperands, reserve space for NumOps operands.
/// 3. If NumOps == NumOperands, trim the reserved space.
///
void SwitchInst::resizeOperands(unsigned NumOps) {
unsigned e = getNumOperands();
if (NumOps == 0) {
NumOps = e*3;
} else if (NumOps*2 > NumOperands) {
// No resize needed.
if (ReservedSpace >= NumOps) return;
} else if (NumOps == NumOperands) {
if (ReservedSpace == NumOps) return;
} else {
return;
}
ReservedSpace = NumOps;
Use *NewOps = allocHungoffUses(NumOps);
Use *OldOps = OperandList;
for (unsigned i = 0; i != e; ++i) {
NewOps[i] = OldOps[i];
}
OperandList = NewOps;
if (OldOps) Use::zap(OldOps, OldOps + e, true);
}
BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
return getSuccessor(idx);
}
unsigned SwitchInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
setSuccessor(idx, B);
}
//===----------------------------------------------------------------------===//
// SwitchInst Implementation
//===----------------------------------------------------------------------===//
void IndirectBrInst::init(Value *Address, unsigned NumDests) {
assert(Address && Address->getType()->isPointerTy() &&
"Address of indirectbr must be a pointer");
ReservedSpace = 1+NumDests;
NumOperands = 1;
OperandList = allocHungoffUses(ReservedSpace);
OperandList[0] = Address;
}
/// resizeOperands - resize operands - This adjusts the length of the operands
/// list according to the following behavior:
/// 1. If NumOps == 0, grow the operand list in response to a push_back style
/// of operation. This grows the number of ops by 2 times.
/// 2. If NumOps > NumOperands, reserve space for NumOps operands.
/// 3. If NumOps == NumOperands, trim the reserved space.
///
void IndirectBrInst::resizeOperands(unsigned NumOps) {
unsigned e = getNumOperands();
if (NumOps == 0) {
NumOps = e*2;
} else if (NumOps*2 > NumOperands) {
// No resize needed.
if (ReservedSpace >= NumOps) return;
} else if (NumOps == NumOperands) {
if (ReservedSpace == NumOps) return;
} else {
return;
}
ReservedSpace = NumOps;
Use *NewOps = allocHungoffUses(NumOps);
Use *OldOps = OperandList;
for (unsigned i = 0; i != e; ++i)
NewOps[i] = OldOps[i];
OperandList = NewOps;
if (OldOps) Use::zap(OldOps, OldOps + e, true);
}
IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
Instruction *InsertBefore)
: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
0, 0, InsertBefore) {
init(Address, NumCases);
}
IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
0, 0, InsertAtEnd) {
init(Address, NumCases);
}
IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
: TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
allocHungoffUses(IBI.getNumOperands()),
IBI.getNumOperands()) {
Use *OL = OperandList, *InOL = IBI.OperandList;
for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
OL[i] = InOL[i];
SubclassOptionalData = IBI.SubclassOptionalData;
}
IndirectBrInst::~IndirectBrInst() {
dropHungoffUses(OperandList);
}
/// addDestination - Add a destination.
///
void IndirectBrInst::addDestination(BasicBlock *DestBB) {
unsigned OpNo = NumOperands;
if (OpNo+1 > ReservedSpace)
resizeOperands(0); // Get more space!
// Initialize some new operands.
assert(OpNo < ReservedSpace && "Growing didn't work!");
NumOperands = OpNo+1;
OperandList[OpNo] = DestBB;
}
/// removeDestination - This method removes the specified successor from the
/// indirectbr instruction.
void IndirectBrInst::removeDestination(unsigned idx) {
assert(idx < getNumOperands()-1 && "Successor index out of range!");
unsigned NumOps = getNumOperands();
Use *OL = OperandList;
// Replace this value with the last one.
OL[idx+1] = OL[NumOps-1];
// Nuke the last value.
OL[NumOps-1].set(0);
NumOperands = NumOps-1;
}
BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
return getSuccessor(idx);
}
unsigned IndirectBrInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
setSuccessor(idx, B);
}
//===----------------------------------------------------------------------===//
// clone_impl() implementations
//===----------------------------------------------------------------------===//
// Define these methods here so vtables don't get emitted into every translation
// unit that uses these classes.
GetElementPtrInst *GetElementPtrInst::clone_impl() const {
return new (getNumOperands()) GetElementPtrInst(*this);
}
BinaryOperator *BinaryOperator::clone_impl() const {
return Create(getOpcode(), Op<0>(), Op<1>());
}
FCmpInst* FCmpInst::clone_impl() const {
return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
}
ICmpInst* ICmpInst::clone_impl() const {
return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
}
ExtractValueInst *ExtractValueInst::clone_impl() const {
return new ExtractValueInst(*this);
}
InsertValueInst *InsertValueInst::clone_impl() const {
return new InsertValueInst(*this);
}
AllocaInst *AllocaInst::clone_impl() const {
return new AllocaInst(getAllocatedType(),
(Value*)getOperand(0),
getAlignment());
}
LoadInst *LoadInst::clone_impl() const {
return new LoadInst(getOperand(0),
Twine(), isVolatile(),
getAlignment());
}
StoreInst *StoreInst::clone_impl() const {
return new StoreInst(getOperand(0), getOperand(1),
isVolatile(), getAlignment());
}
TruncInst *TruncInst::clone_impl() const {
return new TruncInst(getOperand(0), getType());
}
ZExtInst *ZExtInst::clone_impl() const {
return new ZExtInst(getOperand(0), getType());
}
SExtInst *SExtInst::clone_impl() const {
return new SExtInst(getOperand(0), getType());
}
FPTruncInst *FPTruncInst::clone_impl() const {
return new FPTruncInst(getOperand(0), getType());
}
FPExtInst *FPExtInst::clone_impl() const {
return new FPExtInst(getOperand(0), getType());
}
UIToFPInst *UIToFPInst::clone_impl() const {
return new UIToFPInst(getOperand(0), getType());
}
SIToFPInst *SIToFPInst::clone_impl() const {
return new SIToFPInst(getOperand(0), getType());
}
FPToUIInst *FPToUIInst::clone_impl() const {
return new FPToUIInst(getOperand(0), getType());
}
FPToSIInst *FPToSIInst::clone_impl() const {
return new FPToSIInst(getOperand(0), getType());
}
PtrToIntInst *PtrToIntInst::clone_impl() const {
return new PtrToIntInst(getOperand(0), getType());
}
IntToPtrInst *IntToPtrInst::clone_impl() const {
return new IntToPtrInst(getOperand(0), getType());
}
BitCastInst *BitCastInst::clone_impl() const {
return new BitCastInst(getOperand(0), getType());
}
CallInst *CallInst::clone_impl() const {
return new(getNumOperands()) CallInst(*this);
}
SelectInst *SelectInst::clone_impl() const {
return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
}
VAArgInst *VAArgInst::clone_impl() const {
return new VAArgInst(getOperand(0), getType());
}
ExtractElementInst *ExtractElementInst::clone_impl() const {
return ExtractElementInst::Create(getOperand(0), getOperand(1));
}
InsertElementInst *InsertElementInst::clone_impl() const {
return InsertElementInst::Create(getOperand(0),
getOperand(1),
getOperand(2));
}
ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
return new ShuffleVectorInst(getOperand(0),
getOperand(1),
getOperand(2));
}
PHINode *PHINode::clone_impl() const {
return new PHINode(*this);
}
ReturnInst *ReturnInst::clone_impl() const {
return new(getNumOperands()) ReturnInst(*this);
}
BranchInst *BranchInst::clone_impl() const {
unsigned Ops(getNumOperands());
return new(Ops, Ops == 1) BranchInst(*this);
}
SwitchInst *SwitchInst::clone_impl() const {
return new SwitchInst(*this);
}
IndirectBrInst *IndirectBrInst::clone_impl() const {
return new IndirectBrInst(*this);
}
InvokeInst *InvokeInst::clone_impl() const {
return new(getNumOperands()) InvokeInst(*this);
}
UnwindInst *UnwindInst::clone_impl() const {
LLVMContext &Context = getContext();
return new UnwindInst(Context);
}
UnreachableInst *UnreachableInst::clone_impl() const {
LLVMContext &Context = getContext();
return new UnreachableInst(Context);
}