llvm-mirror/lib/CodeGen/Collector.cpp
Gordon Henriksen 2b019da6b0 Collector is the base class for garbage collection code generators.
This version enhances the previous patch to add root initialization
as discussed here:

http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20070910/053455.html

Collector gives its subclasses control over generic algorithms:

  unsigned NeededSafePoints; //< Bitmask of required safe points.
  bool CustomReadBarriers;   //< Default is to insert loads.
  bool CustomWriteBarriers;  //< Default is to insert stores.
  bool CustomRoots;          //< Default is to pass through to backend.
  bool InitRoots;            //< If set, roots are nulled during lowering.

It also has callbacks which collectors can hook:

  /// If any of the actions are set to Custom, this is expected to
  /// be overriden to create a transform to lower those actions to
  /// LLVM IR.
  virtual Pass *createCustomLoweringPass() const;

  /// beginAssembly/finishAssembly - Emit module metadata as
  /// assembly code.
  virtual void beginAssembly(Module &M, std::ostream &OS,
                             AsmPrinter &AP,
                             const TargetAsmInfo &TAI) const;
  virtual void finishAssembly(Module &M,
                              CollectorModuleMetadata &CMM,
                              std::ostream &OS, AsmPrinter &AP,
                              const TargetAsmInfo &TAI) const;  

Various other independent algorithms could be implemented, but were
not necessary for the initial two collectors. Some examples are
listed here:

http://llvm.org/docs/GarbageCollection.html#collector-algos

llvm-svn: 42466
2007-09-29 02:13:43 +00:00

354 lines
12 KiB
C++

//===-- Collector.cpp - Garbage collection infrastructure -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Gordon Henriksen and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements target- and collector-independent garbage collection
// infrastructure.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Collector.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Compiler.h"
using namespace llvm;
namespace {
/// This pass rewrites calls to the llvm.gcread or llvm.gcwrite intrinsics,
/// replacing them with simple loads and stores as directed by the Collector.
/// This is useful for most garbage collectors.
class VISIBILITY_HIDDEN LowerIntrinsics : public FunctionPass {
const Collector &Coll;
/// GCRootInt, GCReadInt, GCWriteInt - The function prototypes for the
/// llvm.gc* intrinsics.
Function *GCRootInt, *GCReadInt, *GCWriteInt;
static bool CouldBecomeSafePoint(Instruction *I);
static void InsertRootInitializers(Function &F,
AllocaInst **Roots, unsigned Count);
public:
static char ID;
LowerIntrinsics(const Collector &GC);
const char *getPassName() const;
bool doInitialization(Module &M);
bool runOnFunction(Function &F);
};
/// This is a target-independent pass over the machine function representation
/// to identify safe points for the garbage collector in the machine code. It
/// inserts labels at safe points and populates the GCInfo class.
class VISIBILITY_HIDDEN MachineCodeAnalysis : public MachineFunctionPass {
const Collector &Coll;
const TargetMachine &Targ;
CollectorMetadata *MD;
MachineModuleInfo *MMI;
const TargetInstrInfo *TII;
MachineFrameInfo *MFI;
void FindSafePoints(MachineFunction &MF);
void VisitCallPoint(MachineBasicBlock::iterator MI);
unsigned InsertLabel(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const;
void FindStackOffsets(MachineFunction &MF);
public:
static char ID;
MachineCodeAnalysis(const Collector &C, const TargetMachine &T);
const char *getPassName() const;
void getAnalysisUsage(AnalysisUsage &AU) const;
bool runOnMachineFunction(MachineFunction &MF);
};
}
// -----------------------------------------------------------------------------
const Collector *llvm::TheCollector = 0;
Collector::Collector() :
NeededSafePoints(0),
CustomReadBarriers(false),
CustomWriteBarriers(false),
CustomRoots(false),
InitRoots(true)
{}
Collector::~Collector() {}
void Collector::addLoweringPasses(FunctionPassManager &PM) const {
if (NeedsDefaultLoweringPass())
PM.add(new LowerIntrinsics(*this));
if (NeedsCustomLoweringPass())
PM.add(createCustomLoweringPass());
}
void Collector::addLoweringPasses(PassManager &PM) const {
if (NeedsDefaultLoweringPass())
PM.add(new LowerIntrinsics(*this));
if (NeedsCustomLoweringPass())
PM.add(createCustomLoweringPass());
}
void Collector::addGenericMachineCodePass(FunctionPassManager &PM,
const TargetMachine &TM,
bool Fast) const {
if (needsSafePoints())
PM.add(new MachineCodeAnalysis(*this, TM));
}
bool Collector::NeedsDefaultLoweringPass() const {
// Default lowering is necessary only if read or write barriers have a default
// action. The default for roots is no action.
return !customWriteBarrier()
|| !customReadBarrier()
|| initializeRoots();
}
bool Collector::NeedsCustomLoweringPass() const {
// Custom lowering is only necessary if enabled for some action.
return customWriteBarrier()
|| customReadBarrier()
|| customRoots();
}
Pass *Collector::createCustomLoweringPass() const {
cerr << "Collector must override createCustomLoweringPass.\n";
abort();
return 0;
}
void Collector::beginAssembly(Module &M, std::ostream &OS, AsmPrinter &AP,
const TargetAsmInfo &TAI) const {
// Default is no action.
}
void Collector::finishAssembly(Module &M, CollectorModuleMetadata &CMM,
std::ostream &OS, AsmPrinter &AP,
const TargetAsmInfo &TAI) const {
// Default is no action.
}
// -----------------------------------------------------------------------------
char LowerIntrinsics::ID = 0;
LowerIntrinsics::LowerIntrinsics(const Collector &C)
: FunctionPass((intptr_t)&ID), Coll(C),
GCRootInt(0), GCReadInt(0), GCWriteInt(0) {}
const char *LowerIntrinsics::getPassName() const {
return "Lower Garbage Collection Instructions";
}
/// doInitialization - If this module uses the GC intrinsics, find them now. If
/// not, this pass does not do anything.
bool LowerIntrinsics::doInitialization(Module &M) {
GCReadInt = M.getFunction("llvm.gcread");
GCWriteInt = M.getFunction("llvm.gcwrite");
GCRootInt = M.getFunction("llvm.gcroot");
return false;
}
void LowerIntrinsics::InsertRootInitializers(Function &F, AllocaInst **Roots,
unsigned Count) {
// Scroll past alloca instructions.
BasicBlock::iterator IP = F.getEntryBlock().begin();
while (isa<AllocaInst>(IP)) ++IP;
// Search for initializers in the initial BB.
SmallPtrSet<AllocaInst*,16> InitedRoots;
for (; !CouldBecomeSafePoint(IP); ++IP)
if (StoreInst *SI = dyn_cast<StoreInst>(IP))
if (AllocaInst *AI = dyn_cast<AllocaInst>(
IntrinsicInst::StripPointerCasts(SI->getOperand(1))))
InitedRoots.insert(AI);
// Add root initializers.
for (AllocaInst **I = Roots, **E = Roots + Count; I != E; ++I)
if (!InitedRoots.count(*I))
new StoreInst(ConstantPointerNull::get(cast<PointerType>(
cast<PointerType>((*I)->getType())->getElementType())),
*I, IP);
}
/// CouldBecomeSafePoint - Predicate to conservatively determine whether the
/// instruction could introduce a safe point.
bool LowerIntrinsics::CouldBecomeSafePoint(Instruction *I) {
// The natural definition of instructions which could introduce safe points
// are:
//
// - call, invoke (AfterCall, BeforeCall)
// - phis (Loops)
// - invoke, ret, unwind (Exit)
//
// However, instructions as seemingly inoccuous as arithmetic can become
// libcalls upon lowering (e.g., div i64 on a 32-bit platform), so instead
// it is necessary to take a conservative approach.
if (isa<AllocaInst>(I) || isa<GetElementPtrInst>(I) ||
isa<StoreInst>(I) || isa<LoadInst>(I))
return false;
// llvm.gcroot is safe because it doesn't do anything at runtime.
if (CallInst *CI = dyn_cast<CallInst>(I))
if (Function *F = CI->getCalledFunction())
if (unsigned IID = F->getIntrinsicID())
if (IID == Intrinsic::gcroot)
return false;
return true;
}
/// runOnFunction - Replace gcread/gcwrite intrinsics with loads and stores.
/// Leave gcroot intrinsics; the code generator needs to see those.
bool LowerIntrinsics::runOnFunction(Function &F) {
// Quick exit for programs that do not declare the intrinsics.
if (!GCReadInt && !GCWriteInt && !GCRootInt) return false;
bool LowerWr = !Coll.customWriteBarrier();
bool LowerRd = !Coll.customReadBarrier();
bool InitRoots = Coll.initializeRoots();
SmallVector<AllocaInst*,32> Roots;
bool MadeChange = false;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
if (CallInst *CI = dyn_cast<CallInst>(II++)) {
Function *F = CI->getCalledFunction();
if (F == GCWriteInt && LowerWr) {
// Replace a write barrier with a simple store.
Value *St = new StoreInst(CI->getOperand(1), CI->getOperand(3), CI);
CI->replaceAllUsesWith(St);
CI->eraseFromParent();
} else if (F == GCReadInt && LowerRd) {
// Replace a read barrier with a simple load.
Value *Ld = new LoadInst(CI->getOperand(2), "", CI);
Ld->takeName(CI);
CI->replaceAllUsesWith(Ld);
CI->eraseFromParent();
} else if (F == GCRootInt && InitRoots) {
// Initialize the GC root, but do not delete the intrinsic. The
// backend needs the intrinsic to flag the stack slot.
Roots.push_back(cast<AllocaInst>(
IntrinsicInst::StripPointerCasts(CI->getOperand(1))));
} else {
continue;
}
MadeChange = true;
}
}
}
if (Roots.size())
InsertRootInitializers(F, Roots.begin(), Roots.size());
return MadeChange;
}
// -----------------------------------------------------------------------------
char MachineCodeAnalysis::ID = 0;
MachineCodeAnalysis::MachineCodeAnalysis(const Collector &C, const TargetMachine &T)
: MachineFunctionPass(intptr_t(&ID)), Coll(C), Targ(T) {}
const char *MachineCodeAnalysis::getPassName() const {
return "Analyze Machine Code For Garbage Collection";
}
void MachineCodeAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
MachineFunctionPass::getAnalysisUsage(AU);
AU.setPreservesAll();
AU.addRequired<MachineModuleInfo>();
AU.addRequired<CollectorModuleMetadata>();
}
unsigned MachineCodeAnalysis::InsertLabel(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
unsigned Label = MMI->NextLabelID();
BuildMI(MBB, MI, TII->get(TargetInstrInfo::LABEL)).addImm(Label);
return Label;
}
void MachineCodeAnalysis::VisitCallPoint(MachineBasicBlock::iterator CI) {
// Find the return address (next instruction), too, so as to bracket the call
// instruction.
MachineBasicBlock::iterator RAI = CI;
++RAI;
if (Coll.needsSafePoint(GC::PreCall))
MD->addSafePoint(GC::PreCall, InsertLabel(*CI->getParent(), CI));
if (Coll.needsSafePoint(GC::PostCall))
MD->addSafePoint(GC::PostCall, InsertLabel(*CI->getParent(), RAI));
}
void MachineCodeAnalysis::FindSafePoints(MachineFunction &MF) {
for (MachineFunction::iterator BBI = MF.begin(),
BBE = MF.end(); BBI != BBE; ++BBI)
for (MachineBasicBlock::iterator MI = BBI->begin(),
ME = BBI->end(); MI != ME; ++MI)
if (TII->isCall(MI->getOpcode()))
VisitCallPoint(*MI);
}
void MachineCodeAnalysis::FindStackOffsets(MachineFunction &MF) {
uint64_t StackSize = MFI->getStackSize();
uint64_t OffsetAdjustment = MFI->getOffsetAdjustment();
uint64_t OffsetOfLocalArea = Targ.getFrameInfo()->getOffsetOfLocalArea();
for (CollectorMetadata::roots_iterator RI = MD->roots_begin(),
RE = MD->roots_end(); RI != RE; ++RI)
RI->StackOffset = MFI->getObjectOffset(RI->Num) + StackSize
- OffsetOfLocalArea + OffsetAdjustment;
}
bool MachineCodeAnalysis::runOnMachineFunction(MachineFunction &MF) {
if (!Coll.needsSafePoints())
return false;
MD = getAnalysis<CollectorModuleMetadata>().get(MF.getFunction());
MMI = &getAnalysis<MachineModuleInfo>();
TII = MF.getTarget().getInstrInfo();
MFI = MF.getFrameInfo();
// Find the size of the stack frame.
MD->setFrameSize(MFI->getStackSize());
// Find all safe points.
FindSafePoints(MF);
// Find the stack offsets for all roots.
FindStackOffsets(MF);
return false;
}