mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-01 00:25:01 +00:00
03f517b799
The Link Register is volatile when using the 32-bit SVR4 ABI. Make it possible to use the 64-bit SVR4 ABI. Add non-volatile registers for the 64-bit SVR4 ABI. Make sure r2 is a reserved register when using the 64-bit SVR4 ABI. Update PPCFrameInfo for the 64-bit SVR4 ABI. Add FIXME for 64-bit Darwin PPC. Insert NOP instruction after direct function calls. Emit official procedure descriptors. Create TOC entries for GlobalAddress references. Spill 64-bit non-volatile registers to the correct slots. Only custom lower VAARG when using the 32-bit SVR4 ABI. Use simple VASTART lowering for the 64-bit SVR4 ABI. llvm-svn: 79091
461 lines
21 KiB
C++
461 lines
21 KiB
C++
//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that PPC uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
|
|
#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
|
|
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "PPC.h"
|
|
#include "PPCSubtarget.h"
|
|
|
|
namespace llvm {
|
|
namespace PPCISD {
|
|
enum NodeType {
|
|
// Start the numbering where the builtin ops and target ops leave off.
|
|
FIRST_NUMBER = ISD::BUILTIN_OP_END,
|
|
|
|
/// FSEL - Traditional three-operand fsel node.
|
|
///
|
|
FSEL,
|
|
|
|
/// FCFID - The FCFID instruction, taking an f64 operand and producing
|
|
/// and f64 value containing the FP representation of the integer that
|
|
/// was temporarily in the f64 operand.
|
|
FCFID,
|
|
|
|
/// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
|
|
/// operand, producing an f64 value containing the integer representation
|
|
/// of that FP value.
|
|
FCTIDZ, FCTIWZ,
|
|
|
|
/// STFIWX - The STFIWX instruction. The first operand is an input token
|
|
/// chain, then an f64 value to store, then an address to store it to,
|
|
/// then a SRCVALUE for the address.
|
|
STFIWX,
|
|
|
|
// VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
|
|
// three v4f32 operands and producing a v4f32 result.
|
|
VMADDFP, VNMSUBFP,
|
|
|
|
/// VPERM - The PPC VPERM Instruction.
|
|
///
|
|
VPERM,
|
|
|
|
/// Hi/Lo - These represent the high and low 16-bit parts of a global
|
|
/// address respectively. These nodes have two operands, the first of
|
|
/// which must be a TargetGlobalAddress, and the second of which must be a
|
|
/// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
|
|
/// though these are usually folded into other nodes.
|
|
Hi, Lo,
|
|
|
|
TOC_ENTRY,
|
|
|
|
/// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
|
|
/// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
|
|
/// compute an allocation on the stack.
|
|
DYNALLOC,
|
|
|
|
/// GlobalBaseReg - On Darwin, this node represents the result of the mflr
|
|
/// at function entry, used for PIC code.
|
|
GlobalBaseReg,
|
|
|
|
/// These nodes represent the 32-bit PPC shifts that operate on 6-bit
|
|
/// shift amounts. These nodes are generated by the multi-precision shift
|
|
/// code.
|
|
SRL, SRA, SHL,
|
|
|
|
/// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
|
|
/// registers.
|
|
EXTSW_32,
|
|
|
|
/// STD_32 - This is the STD instruction for use with "32-bit" registers.
|
|
STD_32,
|
|
|
|
/// CALL - A direct function call.
|
|
CALL_Darwin, CALL_SVR4,
|
|
|
|
/// NOP - Special NOP which follows 64-bit SVR4 calls.
|
|
NOP,
|
|
|
|
/// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
|
|
/// MTCTR instruction.
|
|
MTCTR,
|
|
|
|
/// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
|
|
/// BCTRL instruction.
|
|
BCTRL_Darwin, BCTRL_SVR4,
|
|
|
|
/// Return with a flag operand, matched by 'blr'
|
|
RET_FLAG,
|
|
|
|
/// R32 = MFCR(CRREG, INFLAG) - Represents the MFCR/MFOCRF instructions.
|
|
/// This copies the bits corresponding to the specified CRREG into the
|
|
/// resultant GPR. Bits corresponding to other CR regs are undefined.
|
|
MFCR,
|
|
|
|
/// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
|
|
/// instructions. For lack of better number, we use the opcode number
|
|
/// encoding for the OPC field to identify the compare. For example, 838
|
|
/// is VCMPGTSH.
|
|
VCMP,
|
|
|
|
/// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
|
|
/// altivec VCMP*o instructions. For lack of better number, we use the
|
|
/// opcode number encoding for the OPC field to identify the compare. For
|
|
/// example, 838 is VCMPGTSH.
|
|
VCMPo,
|
|
|
|
/// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
|
|
/// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
|
|
/// condition register to branch on, OPC is the branch opcode to use (e.g.
|
|
/// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
|
|
/// an optional input flag argument.
|
|
COND_BRANCH,
|
|
|
|
/// CHAIN = STBRX CHAIN, GPRC, Ptr, SRCVALUE, Type - This is a
|
|
/// byte-swapping store instruction. It byte-swaps the low "Type" bits of
|
|
/// the GPRC input, then stores it through Ptr. Type can be either i16 or
|
|
/// i32.
|
|
STBRX,
|
|
|
|
/// GPRC, CHAIN = LBRX CHAIN, Ptr, SRCVALUE, Type - This is a
|
|
/// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
|
|
/// then puts it in the bottom bits of the GPRC. TYPE can be either i16
|
|
/// or i32.
|
|
LBRX,
|
|
|
|
// The following 5 instructions are used only as part of the
|
|
// long double-to-int conversion sequence.
|
|
|
|
/// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
|
|
/// register.
|
|
MFFS,
|
|
|
|
/// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
|
|
MTFSB0,
|
|
|
|
/// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
|
|
MTFSB1,
|
|
|
|
/// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
|
|
/// rounding towards zero. It has flags added so it won't move past the
|
|
/// FPSCR-setting instructions.
|
|
FADDRTZ,
|
|
|
|
/// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
|
|
MTFSF,
|
|
|
|
/// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
|
|
/// reserve indexed. This is used to implement atomic operations.
|
|
LARX,
|
|
|
|
/// STCX = This corresponds to PPC stcx. instrcution: store conditional
|
|
/// indexed. This is used to implement atomic operations.
|
|
STCX,
|
|
|
|
/// TC_RETURN - A tail call return.
|
|
/// operand #0 chain
|
|
/// operand #1 callee (register or absolute)
|
|
/// operand #2 stack adjustment
|
|
/// operand #3 optional in flag
|
|
TC_RETURN
|
|
};
|
|
}
|
|
|
|
/// Define some predicates that are used for node matching.
|
|
namespace PPC {
|
|
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUHUM instruction.
|
|
bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
|
|
|
|
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUWUM instruction.
|
|
bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
|
|
|
|
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
|
|
bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
|
|
bool isUnary);
|
|
|
|
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
|
|
bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
|
|
bool isUnary);
|
|
|
|
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
|
|
/// amount, otherwise return -1.
|
|
int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
|
|
|
|
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a splat of a single element that is suitable for input to
|
|
/// VSPLTB/VSPLTH/VSPLTW.
|
|
bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
|
|
|
|
/// isAllNegativeZeroVector - Returns true if all elements of build_vector
|
|
/// are -0.0.
|
|
bool isAllNegativeZeroVector(SDNode *N);
|
|
|
|
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
|
|
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
|
|
unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
|
|
|
|
/// get_VSPLTI_elt - If this is a build_vector of constants which can be
|
|
/// formed by using a vspltis[bhw] instruction of the specified element
|
|
/// size, return the constant being splatted. The ByteSize field indicates
|
|
/// the number of bytes of each element [124] -> [bhw].
|
|
SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
|
|
}
|
|
|
|
class PPCTargetLowering : public TargetLowering {
|
|
int VarArgsFrameIndex; // FrameIndex for start of varargs area.
|
|
int VarArgsStackOffset; // StackOffset for start of stack
|
|
// arguments.
|
|
unsigned VarArgsNumGPR; // Index of the first unused integer
|
|
// register for parameter passing.
|
|
unsigned VarArgsNumFPR; // Index of the first unused double
|
|
// register for parameter passing.
|
|
const PPCSubtarget &PPCSubTarget;
|
|
public:
|
|
explicit PPCTargetLowering(PPCTargetMachine &TM);
|
|
|
|
/// getTargetNodeName() - This method returns the name of a target specific
|
|
/// DAG node.
|
|
virtual const char *getTargetNodeName(unsigned Opcode) const;
|
|
|
|
/// getSetCCResultType - Return the ISD::SETCC ValueType
|
|
virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
|
|
|
|
/// getPreIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if the node's address
|
|
/// can be legally represented as pre-indexed load / store address.
|
|
virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const;
|
|
|
|
/// SelectAddressRegReg - Given the specified addressed, check to see if it
|
|
/// can be represented as an indexed [r+r] operation. Returns false if it
|
|
/// can be more efficiently represented with [r+imm].
|
|
bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
|
|
SelectionDAG &DAG) const;
|
|
|
|
/// SelectAddressRegImm - Returns true if the address N can be represented
|
|
/// by a base register plus a signed 16-bit displacement [r+imm], and if it
|
|
/// is not better represented as reg+reg.
|
|
bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
|
|
SelectionDAG &DAG) const;
|
|
|
|
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
|
|
/// represented as an indexed [r+r] operation.
|
|
bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
|
|
SelectionDAG &DAG) const;
|
|
|
|
/// SelectAddressRegImmShift - Returns true if the address N can be
|
|
/// represented by a base register plus a signed 14-bit displacement
|
|
/// [r+imm*4]. Suitable for use by STD and friends.
|
|
bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
|
|
SelectionDAG &DAG) const;
|
|
|
|
|
|
/// LowerOperation - Provide custom lowering hooks for some operations.
|
|
///
|
|
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
|
|
|
|
/// ReplaceNodeResults - Replace the results of node with an illegal result
|
|
/// type with new values built out of custom code.
|
|
///
|
|
virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG);
|
|
|
|
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
|
|
virtual void computeMaskedBitsForTargetNode(const SDValue Op,
|
|
const APInt &Mask,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth = 0) const;
|
|
|
|
virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const;
|
|
MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
|
|
MachineBasicBlock *MBB, bool is64Bit,
|
|
unsigned BinOpcode) const;
|
|
MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
|
|
MachineBasicBlock *MBB,
|
|
bool is8bit, unsigned Opcode) const;
|
|
|
|
ConstraintType getConstraintType(const std::string &Constraint) const;
|
|
std::pair<unsigned, const TargetRegisterClass*>
|
|
getRegForInlineAsmConstraint(const std::string &Constraint,
|
|
EVT VT) const;
|
|
|
|
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
|
|
/// function arguments in the caller parameter area. This is the actual
|
|
/// alignment, not its logarithm.
|
|
unsigned getByValTypeAlignment(const Type *Ty) const;
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops. If hasMemory is
|
|
/// true it means one of the asm constraint of the inline asm instruction
|
|
/// being processed is 'm'.
|
|
virtual void LowerAsmOperandForConstraint(SDValue Op,
|
|
char ConstraintLetter,
|
|
bool hasMemory,
|
|
std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const;
|
|
|
|
/// isLegalAddressingMode - Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
|
|
|
|
/// isLegalAddressImmediate - Return true if the integer value can be used
|
|
/// as the offset of the target addressing mode for load / store of the
|
|
/// given type.
|
|
virtual bool isLegalAddressImmediate(int64_t V, const Type *Ty) const;
|
|
|
|
/// isLegalAddressImmediate - Return true if the GlobalValue can be used as
|
|
/// the offset of the target addressing mode.
|
|
virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
|
|
|
|
virtual bool
|
|
IsEligibleForTailCallOptimization(SDValue Callee,
|
|
unsigned CalleeCC,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const;
|
|
|
|
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
|
|
|
|
virtual EVT getOptimalMemOpType(uint64_t Size, unsigned Align,
|
|
bool isSrcConst, bool isSrcStr,
|
|
SelectionDAG &DAG) const;
|
|
|
|
/// getFunctionAlignment - Return the Log2 alignment of this function.
|
|
virtual unsigned getFunctionAlignment(const Function *F) const;
|
|
|
|
private:
|
|
SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
|
|
SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
|
|
|
|
SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
|
|
int SPDiff,
|
|
SDValue Chain,
|
|
SDValue &LROpOut,
|
|
SDValue &FPOpOut,
|
|
bool isDarwinABI,
|
|
DebugLoc dl);
|
|
|
|
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
|
|
int VarArgsFrameIndex, int VarArgsStackOffset,
|
|
unsigned VarArgsNumGPR, unsigned VarArgsNumFPR,
|
|
const PPCSubtarget &Subtarget);
|
|
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG, int VarArgsFrameIndex,
|
|
int VarArgsStackOffset, unsigned VarArgsNumGPR,
|
|
unsigned VarArgsNumFPR, const PPCSubtarget &Subtarget);
|
|
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
|
|
const PPCSubtarget &Subtarget);
|
|
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
|
|
const PPCSubtarget &Subtarget);
|
|
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl);
|
|
SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerMUL(SDValue Op, SelectionDAG &DAG);
|
|
|
|
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
unsigned CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals);
|
|
SDValue FinishCall(unsigned CallConv, DebugLoc dl, bool isTailCall,
|
|
bool isVarArg,
|
|
SelectionDAG &DAG,
|
|
SmallVector<std::pair<unsigned, SDValue>, 8>
|
|
&RegsToPass,
|
|
SDValue InFlag, SDValue Chain,
|
|
SDValue &Callee,
|
|
int SPDiff, unsigned NumBytes,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SmallVectorImpl<SDValue> &InVals);
|
|
|
|
virtual SDValue
|
|
LowerFormalArguments(SDValue Chain,
|
|
unsigned CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals);
|
|
|
|
virtual SDValue
|
|
LowerCall(SDValue Chain, SDValue Callee,
|
|
unsigned CallConv, bool isVarArg, bool isTailCall,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals);
|
|
|
|
virtual SDValue
|
|
LowerReturn(SDValue Chain,
|
|
unsigned CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
DebugLoc dl, SelectionDAG &DAG);
|
|
|
|
SDValue
|
|
LowerFormalArguments_Darwin(SDValue Chain,
|
|
unsigned CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals);
|
|
SDValue
|
|
LowerFormalArguments_SVR4(SDValue Chain,
|
|
unsigned CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals);
|
|
|
|
SDValue
|
|
LowerCall_Darwin(SDValue Chain, SDValue Callee,
|
|
unsigned CallConv, bool isVarArg, bool isTailCall,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals);
|
|
SDValue
|
|
LowerCall_SVR4(SDValue Chain, SDValue Callee,
|
|
unsigned CallConv, bool isVarArg, bool isTailCall,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals);
|
|
};
|
|
}
|
|
|
|
#endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
|