llvm-mirror/unittests/Analysis/ValueTrackingTest.cpp
Sanjay Patel 7a0d37b0c0 [ValueTracking] determine sign of 0.0 from select when matching min/max FP
In PR39475:
https://bugs.llvm.org/show_bug.cgi?id=39475
..we may fail to recognize/simplify fabs() in some cases because we do not 
canonicalize fcmp with a -0.0 operand.

Adding that canonicalization can cause regressions on min/max FP tests, so 
that's this patch: for the purpose of determining whether something is min/max, 
let the value returned by the select determine how we treat a 0.0 operand in the fcmp.

This patch doesn't actually change the -0.0 to +0.0. It just changes the analysis, so 
we don't fail to recognize equivalent min/max patterns that only differ in the 
signbit of 0.0.

Differential Revision: https://reviews.llvm.org/D54001

llvm-svn: 346097
2018-11-04 14:28:48 +00:00

614 lines
20 KiB
C++

//===- ValueTrackingTest.cpp - ValueTracking tests ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/KnownBits.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
class MatchSelectPatternTest : public testing::Test {
protected:
void parseAssembly(const char *Assembly) {
SMDiagnostic Error;
M = parseAssemblyString(Assembly, Error, Context);
std::string errMsg;
raw_string_ostream os(errMsg);
Error.print("", os);
// A failure here means that the test itself is buggy.
if (!M)
report_fatal_error(os.str());
Function *F = M->getFunction("test");
if (F == nullptr)
report_fatal_error("Test must have a function named @test");
A = nullptr;
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
if (I->hasName()) {
if (I->getName() == "A")
A = &*I;
}
}
if (A == nullptr)
report_fatal_error("@test must have an instruction %A");
}
void expectPattern(const SelectPatternResult &P) {
Value *LHS, *RHS;
Instruction::CastOps CastOp;
SelectPatternResult R = matchSelectPattern(A, LHS, RHS, &CastOp);
EXPECT_EQ(P.Flavor, R.Flavor);
EXPECT_EQ(P.NaNBehavior, R.NaNBehavior);
EXPECT_EQ(P.Ordered, R.Ordered);
}
LLVMContext Context;
std::unique_ptr<Module> M;
Instruction *A, *B;
};
}
TEST_F(MatchSelectPatternTest, SimpleFMin) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp ult float %a, 5.0\n"
" %A = select i1 %1, float %a, float 5.0\n"
" ret float %A\n"
"}\n");
expectPattern({SPF_FMINNUM, SPNB_RETURNS_NAN, false});
}
TEST_F(MatchSelectPatternTest, SimpleFMax) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp ogt float %a, 5.0\n"
" %A = select i1 %1, float %a, float 5.0\n"
" ret float %A\n"
"}\n");
expectPattern({SPF_FMAXNUM, SPNB_RETURNS_OTHER, true});
}
TEST_F(MatchSelectPatternTest, SwappedFMax) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp olt float 5.0, %a\n"
" %A = select i1 %1, float %a, float 5.0\n"
" ret float %A\n"
"}\n");
expectPattern({SPF_FMAXNUM, SPNB_RETURNS_OTHER, false});
}
TEST_F(MatchSelectPatternTest, SwappedFMax2) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp olt float %a, 5.0\n"
" %A = select i1 %1, float 5.0, float %a\n"
" ret float %A\n"
"}\n");
expectPattern({SPF_FMAXNUM, SPNB_RETURNS_NAN, false});
}
TEST_F(MatchSelectPatternTest, SwappedFMax3) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp ult float %a, 5.0\n"
" %A = select i1 %1, float 5.0, float %a\n"
" ret float %A\n"
"}\n");
expectPattern({SPF_FMAXNUM, SPNB_RETURNS_OTHER, true});
}
TEST_F(MatchSelectPatternTest, FastFMin) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp nnan olt float %a, 5.0\n"
" %A = select i1 %1, float %a, float 5.0\n"
" ret float %A\n"
"}\n");
expectPattern({SPF_FMINNUM, SPNB_RETURNS_ANY, false});
}
TEST_F(MatchSelectPatternTest, FMinConstantZero) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp ole float %a, 0.0\n"
" %A = select i1 %1, float %a, float 0.0\n"
" ret float %A\n"
"}\n");
// This shouldn't be matched, as %a could be -0.0.
expectPattern({SPF_UNKNOWN, SPNB_NA, false});
}
TEST_F(MatchSelectPatternTest, FMinConstantZeroNsz) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp nsz ole float %a, 0.0\n"
" %A = select i1 %1, float %a, float 0.0\n"
" ret float %A\n"
"}\n");
// But this should be, because we've ignored signed zeroes.
expectPattern({SPF_FMINNUM, SPNB_RETURNS_OTHER, true});
}
TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero1) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp olt float -0.0, %a\n"
" %A = select i1 %1, float 0.0, float %a\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMINNUM, SPNB_RETURNS_NAN, true});
}
TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero2) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp ogt float %a, -0.0\n"
" %A = select i1 %1, float 0.0, float %a\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMINNUM, SPNB_RETURNS_NAN, false});
}
TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero3) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp olt float 0.0, %a\n"
" %A = select i1 %1, float -0.0, float %a\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMINNUM, SPNB_RETURNS_NAN, true});
}
TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero4) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp ogt float %a, 0.0\n"
" %A = select i1 %1, float -0.0, float %a\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMINNUM, SPNB_RETURNS_NAN, false});
}
TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero5) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp ogt float -0.0, %a\n"
" %A = select i1 %1, float %a, float 0.0\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMINNUM, SPNB_RETURNS_OTHER, false});
}
TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero6) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp olt float %a, -0.0\n"
" %A = select i1 %1, float %a, float 0.0\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMINNUM, SPNB_RETURNS_OTHER, true});
}
TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero7) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp ogt float 0.0, %a\n"
" %A = select i1 %1, float %a, float -0.0\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMINNUM, SPNB_RETURNS_OTHER, false});
}
TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero8) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp olt float %a, 0.0\n"
" %A = select i1 %1, float %a, float -0.0\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMINNUM, SPNB_RETURNS_OTHER, true});
}
TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero1) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp ogt float -0.0, %a\n"
" %A = select i1 %1, float 0.0, float %a\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMAXNUM, SPNB_RETURNS_NAN, true});
}
TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero2) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp olt float %a, -0.0\n"
" %A = select i1 %1, float 0.0, float %a\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMAXNUM, SPNB_RETURNS_NAN, false});
}
TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero3) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp ogt float 0.0, %a\n"
" %A = select i1 %1, float -0.0, float %a\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMAXNUM, SPNB_RETURNS_NAN, true});
}
TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero4) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp olt float %a, 0.0\n"
" %A = select i1 %1, float -0.0, float %a\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMAXNUM, SPNB_RETURNS_NAN, false});
}
TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero5) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp olt float -0.0, %a\n"
" %A = select i1 %1, float %a, float 0.0\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMAXNUM, SPNB_RETURNS_OTHER, false});
}
TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero6) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp ogt float %a, -0.0\n"
" %A = select i1 %1, float %a, float 0.0\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMAXNUM, SPNB_RETURNS_OTHER, true});
}
TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero7) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp olt float 0.0, %a\n"
" %A = select i1 %1, float %a, float -0.0\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMAXNUM, SPNB_RETURNS_OTHER, false});
}
TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero8) {
parseAssembly(
"define float @test(float %a) {\n"
" %1 = fcmp ogt float %a, 0.0\n"
" %A = select i1 %1, float %a, float -0.0\n"
" ret float %A\n"
"}\n");
// The sign of zero doesn't matter in fcmp.
expectPattern({SPF_FMAXNUM, SPNB_RETURNS_OTHER, true});
}
TEST_F(MatchSelectPatternTest, FMinMismatchConstantZeroVecUndef) {
parseAssembly(
"define <2 x float> @test(<2 x float> %a) {\n"
" %1 = fcmp ogt <2 x float> %a, <float -0.0, float -0.0>\n"
" %A = select <2 x i1> %1, <2 x float> <float undef, float 0.0>, <2 x float> %a\n"
" ret <2 x float> %A\n"
"}\n");
// An undef in a vector constant can not be back-propagated for this analysis.
expectPattern({SPF_UNKNOWN, SPNB_NA, false});
}
TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZeroVecUndef) {
parseAssembly(
"define <2 x float> @test(<2 x float> %a) {\n"
" %1 = fcmp ogt <2 x float> %a, zeroinitializer\n"
" %A = select <2 x i1> %1, <2 x float> %a, <2 x float> <float -0.0, float undef>\n"
" ret <2 x float> %A\n"
"}\n");
// An undef in a vector constant can not be back-propagated for this analysis.
expectPattern({SPF_UNKNOWN, SPNB_NA, false});
}
TEST_F(MatchSelectPatternTest, VectorFMinimum) {
parseAssembly(
"define <4 x float> @test(<4 x float> %a) {\n"
" %1 = fcmp ule <4 x float> %a, \n"
" <float 5.0, float 5.0, float 5.0, float 5.0>\n"
" %A = select <4 x i1> %1, <4 x float> %a,\n"
" <4 x float> <float 5.0, float 5.0, float 5.0, float 5.0>\n"
" ret <4 x float> %A\n"
"}\n");
// Check that pattern matching works on vectors where each lane has the same
// unordered pattern.
expectPattern({SPF_FMINNUM, SPNB_RETURNS_NAN, false});
}
TEST_F(MatchSelectPatternTest, VectorFMinOtherOrdered) {
parseAssembly(
"define <4 x float> @test(<4 x float> %a) {\n"
" %1 = fcmp ole <4 x float> %a, \n"
" <float 5.0, float 5.0, float 5.0, float 5.0>\n"
" %A = select <4 x i1> %1, <4 x float> %a,\n"
" <4 x float> <float 5.0, float 5.0, float 5.0, float 5.0>\n"
" ret <4 x float> %A\n"
"}\n");
// Check that pattern matching works on vectors where each lane has the same
// ordered pattern.
expectPattern({SPF_FMINNUM, SPNB_RETURNS_OTHER, true});
}
TEST_F(MatchSelectPatternTest, VectorNotFMinimum) {
parseAssembly(
"define <4 x float> @test(<4 x float> %a) {\n"
" %1 = fcmp ule <4 x float> %a, \n"
" <float 5.0, float 0x7ff8000000000000, float 5.0, float 5.0>\n"
" %A = select <4 x i1> %1, <4 x float> %a,\n"
" <4 x float> <float 5.0, float 0x7ff8000000000000, float 5.0, float "
"5.0>\n"
" ret <4 x float> %A\n"
"}\n");
// The lane that contains a NaN (0x7ff80...) behaves like a
// non-NaN-propagating min and the other lines behave like a NaN-propagating
// min, so check that neither is returned.
expectPattern({SPF_UNKNOWN, SPNB_NA, false});
}
TEST_F(MatchSelectPatternTest, VectorNotFMinZero) {
parseAssembly(
"define <4 x float> @test(<4 x float> %a) {\n"
" %1 = fcmp ule <4 x float> %a, \n"
" <float 5.0, float -0.0, float 5.0, float 5.0>\n"
" %A = select <4 x i1> %1, <4 x float> %a,\n"
" <4 x float> <float 5.0, float 0.0, float 5.0, float 5.0>\n"
" ret <4 x float> %A\n"
"}\n");
// Always selects the second lane of %a if it is positive or negative zero, so
// this is stricter than a min.
expectPattern({SPF_UNKNOWN, SPNB_NA, false});
}
TEST_F(MatchSelectPatternTest, DoubleCastU) {
parseAssembly(
"define i32 @test(i8 %a, i8 %b) {\n"
" %1 = icmp ult i8 %a, %b\n"
" %2 = zext i8 %a to i32\n"
" %3 = zext i8 %b to i32\n"
" %A = select i1 %1, i32 %2, i32 %3\n"
" ret i32 %A\n"
"}\n");
// We should be able to look through the situation where we cast both operands
// to the select.
expectPattern({SPF_UMIN, SPNB_NA, false});
}
TEST_F(MatchSelectPatternTest, DoubleCastS) {
parseAssembly(
"define i32 @test(i8 %a, i8 %b) {\n"
" %1 = icmp slt i8 %a, %b\n"
" %2 = sext i8 %a to i32\n"
" %3 = sext i8 %b to i32\n"
" %A = select i1 %1, i32 %2, i32 %3\n"
" ret i32 %A\n"
"}\n");
// We should be able to look through the situation where we cast both operands
// to the select.
expectPattern({SPF_SMIN, SPNB_NA, false});
}
TEST_F(MatchSelectPatternTest, DoubleCastBad) {
parseAssembly(
"define i32 @test(i8 %a, i8 %b) {\n"
" %1 = icmp ult i8 %a, %b\n"
" %2 = zext i8 %a to i32\n"
" %3 = sext i8 %b to i32\n"
" %A = select i1 %1, i32 %2, i32 %3\n"
" ret i32 %A\n"
"}\n");
// The cast types here aren't the same, so we cannot match an UMIN.
expectPattern({SPF_UNKNOWN, SPNB_NA, false});
}
TEST(ValueTracking, GuaranteedToTransferExecutionToSuccessor) {
StringRef Assembly =
"declare void @nounwind_readonly(i32*) nounwind readonly "
"declare void @nounwind_argmemonly(i32*) nounwind argmemonly "
"declare void @throws_but_readonly(i32*) readonly "
"declare void @throws_but_argmemonly(i32*) argmemonly "
" "
"declare void @unknown(i32*) "
" "
"define void @f(i32* %p) { "
" call void @nounwind_readonly(i32* %p) "
" call void @nounwind_argmemonly(i32* %p) "
" call void @throws_but_readonly(i32* %p) "
" call void @throws_but_argmemonly(i32* %p) "
" call void @unknown(i32* %p) nounwind readonly "
" call void @unknown(i32* %p) nounwind argmemonly "
" call void @unknown(i32* %p) readonly "
" call void @unknown(i32* %p) argmemonly "
" ret void "
"} ";
LLVMContext Context;
SMDiagnostic Error;
auto M = parseAssemblyString(Assembly, Error, Context);
assert(M && "Bad assembly?");
auto *F = M->getFunction("f");
assert(F && "Bad assembly?");
auto &BB = F->getEntryBlock();
bool ExpectedAnswers[] = {
true, // call void @nounwind_readonly(i32* %p)
true, // call void @nounwind_argmemonly(i32* %p)
false, // call void @throws_but_readonly(i32* %p)
false, // call void @throws_but_argmemonly(i32* %p)
true, // call void @unknown(i32* %p) nounwind readonly
true, // call void @unknown(i32* %p) nounwind argmemonly
false, // call void @unknown(i32* %p) readonly
false, // call void @unknown(i32* %p) argmemonly
false, // ret void
};
int Index = 0;
for (auto &I : BB) {
EXPECT_EQ(isGuaranteedToTransferExecutionToSuccessor(&I),
ExpectedAnswers[Index])
<< "Incorrect answer at instruction " << Index << " = " << I;
Index++;
}
}
TEST(ValueTracking, ComputeNumSignBits_PR32045) {
StringRef Assembly = "define i32 @f(i32 %a) { "
" %val = ashr i32 %a, -1 "
" ret i32 %val "
"} ";
LLVMContext Context;
SMDiagnostic Error;
auto M = parseAssemblyString(Assembly, Error, Context);
assert(M && "Bad assembly?");
auto *F = M->getFunction("f");
assert(F && "Bad assembly?");
auto *RVal =
cast<ReturnInst>(F->getEntryBlock().getTerminator())->getOperand(0);
EXPECT_EQ(ComputeNumSignBits(RVal, M->getDataLayout()), 1u);
}
// No guarantees for canonical IR in this analysis, so this just bails out.
TEST(ValueTracking, ComputeNumSignBits_Shuffle) {
StringRef Assembly = "define <2 x i32> @f() { "
" %val = shufflevector <2 x i32> undef, <2 x i32> undef, <2 x i32> <i32 0, i32 0> "
" ret <2 x i32> %val "
"} ";
LLVMContext Context;
SMDiagnostic Error;
auto M = parseAssemblyString(Assembly, Error, Context);
assert(M && "Bad assembly?");
auto *F = M->getFunction("f");
assert(F && "Bad assembly?");
auto *RVal =
cast<ReturnInst>(F->getEntryBlock().getTerminator())->getOperand(0);
EXPECT_EQ(ComputeNumSignBits(RVal, M->getDataLayout()), 1u);
}
// No guarantees for canonical IR in this analysis, so a shuffle element that
// references an undef value means this can't return any extra information.
TEST(ValueTracking, ComputeNumSignBits_Shuffle2) {
StringRef Assembly = "define <2 x i32> @f(<2 x i1> %x) { "
" %sext = sext <2 x i1> %x to <2 x i32> "
" %val = shufflevector <2 x i32> %sext, <2 x i32> undef, <2 x i32> <i32 0, i32 2> "
" ret <2 x i32> %val "
"} ";
LLVMContext Context;
SMDiagnostic Error;
auto M = parseAssemblyString(Assembly, Error, Context);
assert(M && "Bad assembly?");
auto *F = M->getFunction("f");
assert(F && "Bad assembly?");
auto *RVal =
cast<ReturnInst>(F->getEntryBlock().getTerminator())->getOperand(0);
EXPECT_EQ(ComputeNumSignBits(RVal, M->getDataLayout()), 1u);
}
TEST(ValueTracking, ComputeKnownBits) {
StringRef Assembly = "define i32 @f(i32 %a, i32 %b) { "
" %ash = mul i32 %a, 8 "
" %aad = add i32 %ash, 7 "
" %aan = and i32 %aad, 4095 "
" %bsh = shl i32 %b, 4 "
" %bad = or i32 %bsh, 6 "
" %ban = and i32 %bad, 4095 "
" %mul = mul i32 %aan, %ban "
" ret i32 %mul "
"} ";
LLVMContext Context;
SMDiagnostic Error;
auto M = parseAssemblyString(Assembly, Error, Context);
assert(M && "Bad assembly?");
auto *F = M->getFunction("f");
assert(F && "Bad assembly?");
auto *RVal =
cast<ReturnInst>(F->getEntryBlock().getTerminator())->getOperand(0);
auto Known = computeKnownBits(RVal, M->getDataLayout());
ASSERT_FALSE(Known.hasConflict());
EXPECT_EQ(Known.One.getZExtValue(), 10u);
EXPECT_EQ(Known.Zero.getZExtValue(), 4278190085u);
}
TEST(ValueTracking, ComputeKnownMulBits) {
StringRef Assembly = "define i32 @f(i32 %a, i32 %b) { "
" %aa = shl i32 %a, 5 "
" %bb = shl i32 %b, 5 "
" %aaa = or i32 %aa, 24 "
" %bbb = or i32 %bb, 28 "
" %mul = mul i32 %aaa, %bbb "
" ret i32 %mul "
"} ";
LLVMContext Context;
SMDiagnostic Error;
auto M = parseAssemblyString(Assembly, Error, Context);
assert(M && "Bad assembly?");
auto *F = M->getFunction("f");
assert(F && "Bad assembly?");
auto *RVal =
cast<ReturnInst>(F->getEntryBlock().getTerminator())->getOperand(0);
auto Known = computeKnownBits(RVal, M->getDataLayout());
ASSERT_FALSE(Known.hasConflict());
EXPECT_EQ(Known.One.getZExtValue(), 32u);
EXPECT_EQ(Known.Zero.getZExtValue(), 95u);
}