mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-04-13 13:00:24 +00:00

Summary: Before when we implemented the first EH proposal, 'catch <tag>' instruction may not catch an exception so there were multiple EH pads an exception can unwind to. That means a BB could have multiple EH pad successors. Now after we switched to the new proposal, every 'catch' instruction catches an exception, and there is only one catchpad per catchswitch, so we at most have one EH pad successor, making `ThrowUnwindDest` map in `WasmEHInfo` unnecessary. Keeping `ThrowUnwindDest` map in `WasmEHInfo` has its own problems, because other optimization passes can split a BB that contains possibly throwing calls (previously invokes), and we have to update the map every time that happens, which is not easy for common CodeGen passes. This also correctly updates successor info in LateEHPrepare when we add a rethrow instruction. Reviewers: dschuff Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D58486 llvm-svn: 355296
590 lines
22 KiB
C++
590 lines
22 KiB
C++
//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements routines for translating functions from LLVM IR into
|
|
// Machine IR.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetFrameLowering.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/CodeGen/WasmEHFuncInfo.h"
|
|
#include "llvm/CodeGen/WinEHFuncInfo.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "function-lowering-info"
|
|
|
|
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
|
|
/// PHI nodes or outside of the basic block that defines it, or used by a
|
|
/// switch or atomic instruction, which may expand to multiple basic blocks.
|
|
static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
|
|
if (I->use_empty()) return false;
|
|
if (isa<PHINode>(I)) return true;
|
|
const BasicBlock *BB = I->getParent();
|
|
for (const User *U : I->users())
|
|
if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static ISD::NodeType getPreferredExtendForValue(const Value *V) {
|
|
// For the users of the source value being used for compare instruction, if
|
|
// the number of signed predicate is greater than unsigned predicate, we
|
|
// prefer to use SIGN_EXTEND.
|
|
//
|
|
// With this optimization, we would be able to reduce some redundant sign or
|
|
// zero extension instruction, and eventually more machine CSE opportunities
|
|
// can be exposed.
|
|
ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
|
|
unsigned NumOfSigned = 0, NumOfUnsigned = 0;
|
|
for (const User *U : V->users()) {
|
|
if (const auto *CI = dyn_cast<CmpInst>(U)) {
|
|
NumOfSigned += CI->isSigned();
|
|
NumOfUnsigned += CI->isUnsigned();
|
|
}
|
|
}
|
|
if (NumOfSigned > NumOfUnsigned)
|
|
ExtendKind = ISD::SIGN_EXTEND;
|
|
|
|
return ExtendKind;
|
|
}
|
|
|
|
void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
|
|
SelectionDAG *DAG) {
|
|
Fn = &fn;
|
|
MF = &mf;
|
|
TLI = MF->getSubtarget().getTargetLowering();
|
|
RegInfo = &MF->getRegInfo();
|
|
const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
|
|
unsigned StackAlign = TFI->getStackAlignment();
|
|
|
|
// Check whether the function can return without sret-demotion.
|
|
SmallVector<ISD::OutputArg, 4> Outs;
|
|
CallingConv::ID CC = Fn->getCallingConv();
|
|
|
|
GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
|
|
mf.getDataLayout());
|
|
CanLowerReturn =
|
|
TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
|
|
|
|
// If this personality uses funclets, we need to do a bit more work.
|
|
DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
|
|
EHPersonality Personality = classifyEHPersonality(
|
|
Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
|
|
if (isFuncletEHPersonality(Personality)) {
|
|
// Calculate state numbers if we haven't already.
|
|
WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
|
|
if (Personality == EHPersonality::MSVC_CXX)
|
|
calculateWinCXXEHStateNumbers(&fn, EHInfo);
|
|
else if (isAsynchronousEHPersonality(Personality))
|
|
calculateSEHStateNumbers(&fn, EHInfo);
|
|
else if (Personality == EHPersonality::CoreCLR)
|
|
calculateClrEHStateNumbers(&fn, EHInfo);
|
|
|
|
// Map all BB references in the WinEH data to MBBs.
|
|
for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
|
|
for (WinEHHandlerType &H : TBME.HandlerArray) {
|
|
if (const AllocaInst *AI = H.CatchObj.Alloca)
|
|
CatchObjects.insert({AI, {}}).first->second.push_back(
|
|
&H.CatchObj.FrameIndex);
|
|
else
|
|
H.CatchObj.FrameIndex = INT_MAX;
|
|
}
|
|
}
|
|
}
|
|
if (Personality == EHPersonality::Wasm_CXX) {
|
|
WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
|
|
calculateWasmEHInfo(&fn, EHInfo);
|
|
}
|
|
|
|
// Initialize the mapping of values to registers. This is only set up for
|
|
// instruction values that are used outside of the block that defines
|
|
// them.
|
|
for (const BasicBlock &BB : *Fn) {
|
|
for (const Instruction &I : BB) {
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
|
|
Type *Ty = AI->getAllocatedType();
|
|
unsigned Align =
|
|
std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
|
|
AI->getAlignment());
|
|
|
|
// Static allocas can be folded into the initial stack frame
|
|
// adjustment. For targets that don't realign the stack, don't
|
|
// do this if there is an extra alignment requirement.
|
|
if (AI->isStaticAlloca() &&
|
|
(TFI->isStackRealignable() || (Align <= StackAlign))) {
|
|
const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
|
|
uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
|
|
|
|
TySize *= CUI->getZExtValue(); // Get total allocated size.
|
|
if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
|
|
int FrameIndex = INT_MAX;
|
|
auto Iter = CatchObjects.find(AI);
|
|
if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
|
|
FrameIndex = MF->getFrameInfo().CreateFixedObject(
|
|
TySize, 0, /*Immutable=*/false, /*isAliased=*/true);
|
|
MF->getFrameInfo().setObjectAlignment(FrameIndex, Align);
|
|
} else {
|
|
FrameIndex =
|
|
MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI);
|
|
}
|
|
|
|
StaticAllocaMap[AI] = FrameIndex;
|
|
// Update the catch handler information.
|
|
if (Iter != CatchObjects.end()) {
|
|
for (int *CatchObjPtr : Iter->second)
|
|
*CatchObjPtr = FrameIndex;
|
|
}
|
|
} else {
|
|
// FIXME: Overaligned static allocas should be grouped into
|
|
// a single dynamic allocation instead of using a separate
|
|
// stack allocation for each one.
|
|
if (Align <= StackAlign)
|
|
Align = 0;
|
|
// Inform the Frame Information that we have variable-sized objects.
|
|
MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI);
|
|
}
|
|
}
|
|
|
|
// Look for inline asm that clobbers the SP register.
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
|
|
ImmutableCallSite CS(&I);
|
|
if (isa<InlineAsm>(CS.getCalledValue())) {
|
|
unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
|
|
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
|
|
std::vector<TargetLowering::AsmOperandInfo> Ops =
|
|
TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
|
|
for (TargetLowering::AsmOperandInfo &Op : Ops) {
|
|
if (Op.Type == InlineAsm::isClobber) {
|
|
// Clobbers don't have SDValue operands, hence SDValue().
|
|
TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
|
|
std::pair<unsigned, const TargetRegisterClass *> PhysReg =
|
|
TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
|
|
Op.ConstraintVT);
|
|
if (PhysReg.first == SP)
|
|
MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look for calls to the @llvm.va_start intrinsic. We can omit some
|
|
// prologue boilerplate for variadic functions that don't examine their
|
|
// arguments.
|
|
if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
|
|
if (II->getIntrinsicID() == Intrinsic::vastart)
|
|
MF->getFrameInfo().setHasVAStart(true);
|
|
}
|
|
|
|
// If we have a musttail call in a variadic function, we need to ensure we
|
|
// forward implicit register parameters.
|
|
if (const auto *CI = dyn_cast<CallInst>(&I)) {
|
|
if (CI->isMustTailCall() && Fn->isVarArg())
|
|
MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
|
|
}
|
|
|
|
// Mark values used outside their block as exported, by allocating
|
|
// a virtual register for them.
|
|
if (isUsedOutsideOfDefiningBlock(&I))
|
|
if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
|
|
InitializeRegForValue(&I);
|
|
|
|
// Decide the preferred extend type for a value.
|
|
PreferredExtendType[&I] = getPreferredExtendForValue(&I);
|
|
}
|
|
}
|
|
|
|
// Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
|
|
// also creates the initial PHI MachineInstrs, though none of the input
|
|
// operands are populated.
|
|
for (const BasicBlock &BB : *Fn) {
|
|
// Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
|
|
// are really data, and no instructions can live here.
|
|
if (BB.isEHPad()) {
|
|
const Instruction *PadInst = BB.getFirstNonPHI();
|
|
// If this is a non-landingpad EH pad, mark this function as using
|
|
// funclets.
|
|
// FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
|
|
// setting this in such cases in order to improve frame layout.
|
|
if (!isa<LandingPadInst>(PadInst)) {
|
|
MF->setHasEHScopes(true);
|
|
MF->setHasEHFunclets(true);
|
|
MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
|
|
}
|
|
if (isa<CatchSwitchInst>(PadInst)) {
|
|
assert(&*BB.begin() == PadInst &&
|
|
"WinEHPrepare failed to remove PHIs from imaginary BBs");
|
|
continue;
|
|
}
|
|
if (isa<FuncletPadInst>(PadInst))
|
|
assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
|
|
}
|
|
|
|
MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
|
|
MBBMap[&BB] = MBB;
|
|
MF->push_back(MBB);
|
|
|
|
// Transfer the address-taken flag. This is necessary because there could
|
|
// be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
|
|
// the first one should be marked.
|
|
if (BB.hasAddressTaken())
|
|
MBB->setHasAddressTaken();
|
|
|
|
// Mark landing pad blocks.
|
|
if (BB.isEHPad())
|
|
MBB->setIsEHPad();
|
|
|
|
// Create Machine PHI nodes for LLVM PHI nodes, lowering them as
|
|
// appropriate.
|
|
for (const PHINode &PN : BB.phis()) {
|
|
if (PN.use_empty())
|
|
continue;
|
|
|
|
// Skip empty types
|
|
if (PN.getType()->isEmptyTy())
|
|
continue;
|
|
|
|
DebugLoc DL = PN.getDebugLoc();
|
|
unsigned PHIReg = ValueMap[&PN];
|
|
assert(PHIReg && "PHI node does not have an assigned virtual register!");
|
|
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
|
|
for (EVT VT : ValueVTs) {
|
|
unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
|
|
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
|
|
for (unsigned i = 0; i != NumRegisters; ++i)
|
|
BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
|
|
PHIReg += NumRegisters;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isFuncletEHPersonality(Personality)) {
|
|
WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
|
|
|
|
// Map all BB references in the WinEH data to MBBs.
|
|
for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
|
|
for (WinEHHandlerType &H : TBME.HandlerArray) {
|
|
if (H.Handler)
|
|
H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
|
|
}
|
|
}
|
|
for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
|
|
if (UME.Cleanup)
|
|
UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
|
|
for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
|
|
const auto *BB = UME.Handler.get<const BasicBlock *>();
|
|
UME.Handler = MBBMap[BB];
|
|
}
|
|
for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
|
|
const auto *BB = CME.Handler.get<const BasicBlock *>();
|
|
CME.Handler = MBBMap[BB];
|
|
}
|
|
}
|
|
|
|
else if (Personality == EHPersonality::Wasm_CXX) {
|
|
WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
|
|
// Map all BB references in the WinEH data to MBBs.
|
|
DenseMap<BBOrMBB, BBOrMBB> NewMap;
|
|
for (auto &KV : EHInfo.EHPadUnwindMap) {
|
|
const auto *Src = KV.first.get<const BasicBlock *>();
|
|
const auto *Dst = KV.second.get<const BasicBlock *>();
|
|
NewMap[MBBMap[Src]] = MBBMap[Dst];
|
|
}
|
|
EHInfo.EHPadUnwindMap = std::move(NewMap);
|
|
}
|
|
}
|
|
|
|
/// clear - Clear out all the function-specific state. This returns this
|
|
/// FunctionLoweringInfo to an empty state, ready to be used for a
|
|
/// different function.
|
|
void FunctionLoweringInfo::clear() {
|
|
MBBMap.clear();
|
|
ValueMap.clear();
|
|
VirtReg2Value.clear();
|
|
StaticAllocaMap.clear();
|
|
LiveOutRegInfo.clear();
|
|
VisitedBBs.clear();
|
|
ArgDbgValues.clear();
|
|
DescribedArgs.clear();
|
|
ByValArgFrameIndexMap.clear();
|
|
RegFixups.clear();
|
|
RegsWithFixups.clear();
|
|
StatepointStackSlots.clear();
|
|
StatepointSpillMaps.clear();
|
|
PreferredExtendType.clear();
|
|
}
|
|
|
|
/// CreateReg - Allocate a single virtual register for the given type.
|
|
unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
|
|
return RegInfo->createVirtualRegister(
|
|
MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
|
|
}
|
|
|
|
/// CreateRegs - Allocate the appropriate number of virtual registers of
|
|
/// the correctly promoted or expanded types. Assign these registers
|
|
/// consecutive vreg numbers and return the first assigned number.
|
|
///
|
|
/// In the case that the given value has struct or array type, this function
|
|
/// will assign registers for each member or element.
|
|
///
|
|
unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
|
|
const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
|
|
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
|
|
|
|
unsigned FirstReg = 0;
|
|
for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
|
|
EVT ValueVT = ValueVTs[Value];
|
|
MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
|
|
|
|
unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
|
|
for (unsigned i = 0; i != NumRegs; ++i) {
|
|
unsigned R = CreateReg(RegisterVT);
|
|
if (!FirstReg) FirstReg = R;
|
|
}
|
|
}
|
|
return FirstReg;
|
|
}
|
|
|
|
/// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
|
|
/// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
|
|
/// the register's LiveOutInfo is for a smaller bit width, it is extended to
|
|
/// the larger bit width by zero extension. The bit width must be no smaller
|
|
/// than the LiveOutInfo's existing bit width.
|
|
const FunctionLoweringInfo::LiveOutInfo *
|
|
FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
|
|
if (!LiveOutRegInfo.inBounds(Reg))
|
|
return nullptr;
|
|
|
|
LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
|
|
if (!LOI->IsValid)
|
|
return nullptr;
|
|
|
|
if (BitWidth > LOI->Known.getBitWidth()) {
|
|
LOI->NumSignBits = 1;
|
|
LOI->Known = LOI->Known.zext(BitWidth, false /* => any extend */);
|
|
}
|
|
|
|
return LOI;
|
|
}
|
|
|
|
/// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
|
|
/// register based on the LiveOutInfo of its operands.
|
|
void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
|
|
Type *Ty = PN->getType();
|
|
if (!Ty->isIntegerTy() || Ty->isVectorTy())
|
|
return;
|
|
|
|
SmallVector<EVT, 1> ValueVTs;
|
|
ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
|
|
assert(ValueVTs.size() == 1 &&
|
|
"PHIs with non-vector integer types should have a single VT.");
|
|
EVT IntVT = ValueVTs[0];
|
|
|
|
if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
|
|
return;
|
|
IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
|
|
unsigned BitWidth = IntVT.getSizeInBits();
|
|
|
|
unsigned DestReg = ValueMap[PN];
|
|
if (!TargetRegisterInfo::isVirtualRegister(DestReg))
|
|
return;
|
|
LiveOutRegInfo.grow(DestReg);
|
|
LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
|
|
|
|
Value *V = PN->getIncomingValue(0);
|
|
if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
|
|
DestLOI.NumSignBits = 1;
|
|
DestLOI.Known = KnownBits(BitWidth);
|
|
return;
|
|
}
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
|
APInt Val = CI->getValue().zextOrTrunc(BitWidth);
|
|
DestLOI.NumSignBits = Val.getNumSignBits();
|
|
DestLOI.Known.Zero = ~Val;
|
|
DestLOI.Known.One = Val;
|
|
} else {
|
|
assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
|
|
"CopyToReg node was created.");
|
|
unsigned SrcReg = ValueMap[V];
|
|
if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
|
|
DestLOI.IsValid = false;
|
|
return;
|
|
}
|
|
const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
|
|
if (!SrcLOI) {
|
|
DestLOI.IsValid = false;
|
|
return;
|
|
}
|
|
DestLOI = *SrcLOI;
|
|
}
|
|
|
|
assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
|
|
DestLOI.Known.One.getBitWidth() == BitWidth &&
|
|
"Masks should have the same bit width as the type.");
|
|
|
|
for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *V = PN->getIncomingValue(i);
|
|
if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
|
|
DestLOI.NumSignBits = 1;
|
|
DestLOI.Known = KnownBits(BitWidth);
|
|
return;
|
|
}
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
|
APInt Val = CI->getValue().zextOrTrunc(BitWidth);
|
|
DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
|
|
DestLOI.Known.Zero &= ~Val;
|
|
DestLOI.Known.One &= Val;
|
|
continue;
|
|
}
|
|
|
|
assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
|
|
"its CopyToReg node was created.");
|
|
unsigned SrcReg = ValueMap[V];
|
|
if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
|
|
DestLOI.IsValid = false;
|
|
return;
|
|
}
|
|
const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
|
|
if (!SrcLOI) {
|
|
DestLOI.IsValid = false;
|
|
return;
|
|
}
|
|
DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
|
|
DestLOI.Known.Zero &= SrcLOI->Known.Zero;
|
|
DestLOI.Known.One &= SrcLOI->Known.One;
|
|
}
|
|
}
|
|
|
|
/// setArgumentFrameIndex - Record frame index for the byval
|
|
/// argument. This overrides previous frame index entry for this argument,
|
|
/// if any.
|
|
void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
|
|
int FI) {
|
|
ByValArgFrameIndexMap[A] = FI;
|
|
}
|
|
|
|
/// getArgumentFrameIndex - Get frame index for the byval argument.
|
|
/// If the argument does not have any assigned frame index then 0 is
|
|
/// returned.
|
|
int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
|
|
auto I = ByValArgFrameIndexMap.find(A);
|
|
if (I != ByValArgFrameIndexMap.end())
|
|
return I->second;
|
|
LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
|
|
return INT_MAX;
|
|
}
|
|
|
|
unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
|
|
const Value *CPI, const TargetRegisterClass *RC) {
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
auto I = CatchPadExceptionPointers.insert({CPI, 0});
|
|
unsigned &VReg = I.first->second;
|
|
if (I.second)
|
|
VReg = MRI.createVirtualRegister(RC);
|
|
assert(VReg && "null vreg in exception pointer table!");
|
|
return VReg;
|
|
}
|
|
|
|
unsigned
|
|
FunctionLoweringInfo::getOrCreateSwiftErrorVReg(const MachineBasicBlock *MBB,
|
|
const Value *Val) {
|
|
auto Key = std::make_pair(MBB, Val);
|
|
auto It = SwiftErrorVRegDefMap.find(Key);
|
|
// If this is the first use of this swifterror value in this basic block,
|
|
// create a new virtual register.
|
|
// After we processed all basic blocks we will satisfy this "upwards exposed
|
|
// use" by inserting a copy or phi at the beginning of this block.
|
|
if (It == SwiftErrorVRegDefMap.end()) {
|
|
auto &DL = MF->getDataLayout();
|
|
const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
|
|
auto VReg = MF->getRegInfo().createVirtualRegister(RC);
|
|
SwiftErrorVRegDefMap[Key] = VReg;
|
|
SwiftErrorVRegUpwardsUse[Key] = VReg;
|
|
return VReg;
|
|
} else return It->second;
|
|
}
|
|
|
|
void FunctionLoweringInfo::setCurrentSwiftErrorVReg(
|
|
const MachineBasicBlock *MBB, const Value *Val, unsigned VReg) {
|
|
SwiftErrorVRegDefMap[std::make_pair(MBB, Val)] = VReg;
|
|
}
|
|
|
|
std::pair<unsigned, bool>
|
|
FunctionLoweringInfo::getOrCreateSwiftErrorVRegDefAt(const Instruction *I) {
|
|
auto Key = PointerIntPair<const Instruction *, 1, bool>(I, true);
|
|
auto It = SwiftErrorVRegDefUses.find(Key);
|
|
if (It == SwiftErrorVRegDefUses.end()) {
|
|
auto &DL = MF->getDataLayout();
|
|
const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
|
|
unsigned VReg = MF->getRegInfo().createVirtualRegister(RC);
|
|
SwiftErrorVRegDefUses[Key] = VReg;
|
|
return std::make_pair(VReg, true);
|
|
}
|
|
return std::make_pair(It->second, false);
|
|
}
|
|
|
|
std::pair<unsigned, bool>
|
|
FunctionLoweringInfo::getOrCreateSwiftErrorVRegUseAt(const Instruction *I, const MachineBasicBlock *MBB, const Value *Val) {
|
|
auto Key = PointerIntPair<const Instruction *, 1, bool>(I, false);
|
|
auto It = SwiftErrorVRegDefUses.find(Key);
|
|
if (It == SwiftErrorVRegDefUses.end()) {
|
|
unsigned VReg = getOrCreateSwiftErrorVReg(MBB, Val);
|
|
SwiftErrorVRegDefUses[Key] = VReg;
|
|
return std::make_pair(VReg, true);
|
|
}
|
|
return std::make_pair(It->second, false);
|
|
}
|
|
|
|
const Value *
|
|
FunctionLoweringInfo::getValueFromVirtualReg(unsigned Vreg) {
|
|
if (VirtReg2Value.empty()) {
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
for (auto &P : ValueMap) {
|
|
ValueVTs.clear();
|
|
ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
|
|
P.first->getType(), ValueVTs);
|
|
unsigned Reg = P.second;
|
|
for (EVT VT : ValueVTs) {
|
|
unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
|
|
for (unsigned i = 0, e = NumRegisters; i != e; ++i)
|
|
VirtReg2Value[Reg++] = P.first;
|
|
}
|
|
}
|
|
}
|
|
return VirtReg2Value.lookup(Vreg);
|
|
}
|