mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-23 12:24:34 +00:00
686e94e760
llvm-svn: 7492
671 lines
20 KiB
C++
671 lines
20 KiB
C++
//===-- GrapAuxillary.cpp- Auxillary functions on graph ----------*- C++ -*--=//
|
|
//
|
|
//auxillary function associated with graph: they
|
|
//all operate on graph, and help in inserting
|
|
//instrumentation for trace generation
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "Support/Debug.h"
|
|
#include <algorithm>
|
|
#include "Graph.h"
|
|
|
|
//using std::list;
|
|
using std::map;
|
|
using std::vector;
|
|
using std::cerr;
|
|
|
|
//check if 2 edges are equal (same endpoints and same weight)
|
|
static bool edgesEqual(Edge ed1, Edge ed2){
|
|
return ((ed1==ed2) && ed1.getWeight()==ed2.getWeight());
|
|
}
|
|
|
|
//Get the vector of edges that are to be instrumented in the graph
|
|
static void getChords(vector<Edge > &chords, Graph &g, Graph st){
|
|
//make sure the spanning tree is directional
|
|
//iterate over ALL the edges of the graph
|
|
vector<Node *> allNodes=g.getAllNodes();
|
|
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
|
++NI){
|
|
Graph::nodeList node_list=g.getNodeList(*NI);
|
|
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
|
NLI!=NLE; ++NLI){
|
|
Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
|
|
if(!(st.hasEdgeAndWt(f)))//addnl
|
|
chords.push_back(f);
|
|
}
|
|
}
|
|
}
|
|
|
|
//Given a tree t, and a "directed graph" g
|
|
//replace the edges in the tree t with edges that exist in graph
|
|
//The tree is formed from "undirectional" copy of graph
|
|
//So whatever edges the tree has, the undirectional graph
|
|
//would have too. This function corrects some of the directions in
|
|
//the tree so that now, all edge directions in the tree match
|
|
//the edge directions of corresponding edges in the directed graph
|
|
static void removeTreeEdges(Graph &g, Graph& t){
|
|
vector<Node* > allNodes=t.getAllNodes();
|
|
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
|
++NI){
|
|
Graph::nodeList nl=t.getNodeList(*NI);
|
|
for(Graph::nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE;++NLI){
|
|
Edge ed(NLI->element, *NI, NLI->weight);
|
|
if(!g.hasEdgeAndWt(ed)) t.removeEdge(ed);//tree has only one edge
|
|
//between any pair of vertices, so no need to delete by edge wt
|
|
}
|
|
}
|
|
}
|
|
|
|
//Assign a value to all the edges in the graph
|
|
//such that if we traverse along any path from root to exit, and
|
|
//add up the edge values, we get a path number that uniquely
|
|
//refers to the path we travelled
|
|
int valueAssignmentToEdges(Graph& g, map<Node *, int> nodePriority,
|
|
vector<Edge> &be){
|
|
vector<Node *> revtop=g.reverseTopologicalSort();
|
|
map<Node *,int > NumPaths;
|
|
for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end();
|
|
RI!=RE; ++RI){
|
|
if(g.isLeaf(*RI))
|
|
NumPaths[*RI]=1;
|
|
else{
|
|
NumPaths[*RI]=0;
|
|
|
|
// Modified Graph::nodeList &nlist=g.getNodeList(*RI);
|
|
Graph::nodeList &nlist=g.getSortedNodeList(*RI, be);
|
|
|
|
//sort nodelist by increasing order of numpaths
|
|
|
|
int sz=nlist.size();
|
|
|
|
for(int i=0;i<sz-1; i++){
|
|
int min=i;
|
|
for(int j=i+1; j<sz; j++){
|
|
BasicBlock *bb1 = nlist[j].element->getElement();
|
|
BasicBlock *bb2 = nlist[min].element->getElement();
|
|
|
|
if(bb1 == bb2) continue;
|
|
|
|
if(*RI == g.getRoot()){
|
|
assert(nodePriority[nlist[min].element]!=
|
|
nodePriority[nlist[j].element]
|
|
&& "priorities can't be same!");
|
|
|
|
if(nodePriority[nlist[j].element] <
|
|
nodePriority[nlist[min].element])
|
|
min = j;
|
|
}
|
|
|
|
else{
|
|
TerminatorInst *tti = (*RI)->getElement()->getTerminator();
|
|
|
|
BranchInst *ti = cast<BranchInst>(tti);
|
|
assert(ti && "not a branch");
|
|
assert(ti->getNumSuccessors()==2 && "less successors!");
|
|
|
|
BasicBlock *tB = ti->getSuccessor(0);
|
|
BasicBlock *fB = ti->getSuccessor(1);
|
|
|
|
if(tB == bb1 || fB == bb2)
|
|
min = j;
|
|
}
|
|
|
|
}
|
|
graphListElement tempEl=nlist[min];
|
|
nlist[min]=nlist[i];
|
|
nlist[i]=tempEl;
|
|
}
|
|
|
|
//sorted now!
|
|
for(Graph::nodeList::iterator GLI=nlist.begin(), GLE=nlist.end();
|
|
GLI!=GLE; ++GLI){
|
|
GLI->weight=NumPaths[*RI];
|
|
NumPaths[*RI]+=NumPaths[GLI->element];
|
|
}
|
|
}
|
|
}
|
|
return NumPaths[g.getRoot()];
|
|
}
|
|
|
|
//This is a helper function to get the edge increments
|
|
//This is used in conjuntion with inc_DFS
|
|
//to get the edge increments
|
|
//Edge increment implies assigning a value to all the edges in the graph
|
|
//such that if we traverse along any path from root to exit, and
|
|
//add up the edge values, we get a path number that uniquely
|
|
//refers to the path we travelled
|
|
//inc_Dir tells whether 2 edges are in same, or in different directions
|
|
//if same direction, return 1, else -1
|
|
static int inc_Dir(Edge e, Edge f){
|
|
if(e.isNull())
|
|
return 1;
|
|
|
|
//check that the edges must have atleast one common endpoint
|
|
assert(*(e.getFirst())==*(f.getFirst()) ||
|
|
*(e.getFirst())==*(f.getSecond()) ||
|
|
*(e.getSecond())==*(f.getFirst()) ||
|
|
*(e.getSecond())==*(f.getSecond()));
|
|
|
|
if(*(e.getFirst())==*(f.getSecond()) ||
|
|
*(e.getSecond())==*(f.getFirst()))
|
|
return 1;
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
//used for getting edge increments (read comments above in inc_Dir)
|
|
//inc_DFS is a modification of DFS
|
|
static void inc_DFS(Graph& g,Graph& t,map<Edge, int, EdgeCompare2>& Increment,
|
|
int events, Node *v, Edge e){
|
|
|
|
vector<Node *> allNodes=t.getAllNodes();
|
|
|
|
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
|
++NI){
|
|
Graph::nodeList node_list=t.getNodeList(*NI);
|
|
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
|
NLI!= NLE; ++NLI){
|
|
Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
|
|
if(!edgesEqual(f,e) && *v==*(f.getSecond())){
|
|
int dir_count=inc_Dir(e,f);
|
|
int wt=1*f.getWeight();
|
|
inc_DFS(g,t, Increment, dir_count*events+wt, f.getFirst(), f);
|
|
}
|
|
}
|
|
}
|
|
|
|
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
|
++NI){
|
|
Graph::nodeList node_list=t.getNodeList(*NI);
|
|
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
|
NLI!=NLE; ++NLI){
|
|
Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
|
|
if(!edgesEqual(f,e) && *v==*(f.getFirst())){
|
|
int dir_count=inc_Dir(e,f);
|
|
int wt=f.getWeight();
|
|
inc_DFS(g,t, Increment, dir_count*events+wt,
|
|
f.getSecond(), f);
|
|
}
|
|
}
|
|
}
|
|
|
|
allNodes=g.getAllNodes();
|
|
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
|
++NI){
|
|
Graph::nodeList node_list=g.getNodeList(*NI);
|
|
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
|
NLI!=NLE; ++NLI){
|
|
Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
|
|
if(!(t.hasEdgeAndWt(f)) && (*v==*(f.getSecond()) ||
|
|
*v==*(f.getFirst()))){
|
|
int dir_count=inc_Dir(e,f);
|
|
Increment[f]+=dir_count*events;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//Now we select a subset of all edges
|
|
//and assign them some values such that
|
|
//if we consider just this subset, it still represents
|
|
//the path sum along any path in the graph
|
|
static map<Edge, int, EdgeCompare2> getEdgeIncrements(Graph& g, Graph& t,
|
|
vector<Edge> &be){
|
|
//get all edges in g-t
|
|
map<Edge, int, EdgeCompare2> Increment;
|
|
|
|
vector<Node *> allNodes=g.getAllNodes();
|
|
|
|
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
|
++NI){
|
|
Graph::nodeList node_list=g.getSortedNodeList(*NI, be);
|
|
//modified g.getNodeList(*NI);
|
|
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
|
NLI!=NLE; ++NLI){
|
|
Edge ed(*NI, NLI->element,NLI->weight,NLI->randId);
|
|
if(!(t.hasEdgeAndWt(ed))){
|
|
Increment[ed]=0;;
|
|
}
|
|
}
|
|
}
|
|
|
|
Edge *ed=new Edge();
|
|
inc_DFS(g,t,Increment, 0, g.getRoot(), *ed);
|
|
|
|
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
|
++NI){
|
|
Graph::nodeList node_list=g.getSortedNodeList(*NI, be);
|
|
//modified g.getNodeList(*NI);
|
|
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
|
NLI!=NLE; ++NLI){
|
|
Edge ed(*NI, NLI->element,NLI->weight, NLI->randId);
|
|
if(!(t.hasEdgeAndWt(ed))){
|
|
int wt=ed.getWeight();
|
|
Increment[ed]+=wt;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Increment;
|
|
}
|
|
|
|
//push it up: TODO
|
|
const graphListElement *findNodeInList(const Graph::nodeList &NL,
|
|
Node *N);
|
|
|
|
graphListElement *findNodeInList(Graph::nodeList &NL, Node *N);
|
|
//end TODO
|
|
|
|
//Based on edgeIncrements (above), now obtain
|
|
//the kind of code to be inserted along an edge
|
|
//The idea here is to minimize the computation
|
|
//by inserting only the needed code
|
|
static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *, EdgeCompare2> &instr,
|
|
vector<Edge > &chords,
|
|
map<Edge,int, EdgeCompare2> &edIncrements){
|
|
|
|
//Register initialization code
|
|
vector<Node *> ws;
|
|
ws.push_back(g.getRoot());
|
|
while(ws.size()>0){
|
|
Node *v=ws.back();
|
|
ws.pop_back();
|
|
//for each edge v->w
|
|
Graph::nodeList succs=g.getNodeList(v);
|
|
|
|
for(Graph::nodeList::iterator nl=succs.begin(), ne=succs.end();
|
|
nl!=ne; ++nl){
|
|
int edgeWt=nl->weight;
|
|
Node *w=nl->element;
|
|
//if chords has v->w
|
|
Edge ed(v,w, edgeWt, nl->randId);
|
|
bool hasEdge=false;
|
|
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end();
|
|
CI!=CE && !hasEdge;++CI){
|
|
if(*CI==ed && CI->getWeight()==edgeWt){//modf
|
|
hasEdge=true;
|
|
}
|
|
}
|
|
|
|
if(hasEdge){//so its a chord edge
|
|
getEdgeCode *edCd=new getEdgeCode();
|
|
edCd->setCond(1);
|
|
edCd->setInc(edIncrements[ed]);
|
|
instr[ed]=edCd;
|
|
}
|
|
else if(g.getNumberOfIncomingEdges(w)==1){
|
|
ws.push_back(w);
|
|
}
|
|
else{
|
|
getEdgeCode *edCd=new getEdgeCode();
|
|
edCd->setCond(2);
|
|
edCd->setInc(0);
|
|
instr[ed]=edCd;
|
|
}
|
|
}
|
|
}
|
|
|
|
/////Memory increment code
|
|
ws.push_back(g.getExit());
|
|
|
|
while(!ws.empty()) {
|
|
Node *w=ws.back();
|
|
ws.pop_back();
|
|
|
|
|
|
///////
|
|
//vector<Node *> lt;
|
|
vector<Node *> lllt=g.getAllNodes();
|
|
for(vector<Node *>::iterator EII=lllt.begin(); EII!=lllt.end() ;++EII){
|
|
Node *lnode=*EII;
|
|
Graph::nodeList &nl = g.getNodeList(lnode);
|
|
//graphListElement *N = findNodeInList(nl, w);
|
|
for(Graph::nodeList::const_iterator N = nl.begin(),
|
|
NNEN = nl.end(); N!= NNEN; ++N){
|
|
if (*N->element == *w){
|
|
Node *v=lnode;
|
|
|
|
//if chords has v->w
|
|
Edge ed(v,w, N->weight, N->randId);
|
|
getEdgeCode *edCd=new getEdgeCode();
|
|
bool hasEdge=false;
|
|
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE;
|
|
++CI){
|
|
if(*CI==ed && CI->getWeight()==N->weight){
|
|
hasEdge=true;
|
|
break;
|
|
}
|
|
}
|
|
if(hasEdge){
|
|
//char str[100];
|
|
if(instr[ed]!=NULL && instr[ed]->getCond()==1){
|
|
instr[ed]->setCond(4);
|
|
}
|
|
else{
|
|
edCd->setCond(5);
|
|
edCd->setInc(edIncrements[ed]);
|
|
instr[ed]=edCd;
|
|
}
|
|
|
|
}
|
|
else if(g.getNumberOfOutgoingEdges(v)==1)
|
|
ws.push_back(v);
|
|
else{
|
|
edCd->setCond(6);
|
|
instr[ed]=edCd;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
///// Register increment code
|
|
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE; ++CI){
|
|
getEdgeCode *edCd=new getEdgeCode();
|
|
if(instr[*CI]==NULL){
|
|
edCd->setCond(3);
|
|
edCd->setInc(edIncrements[*CI]);
|
|
instr[*CI]=edCd;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Add dummy edges corresponding to the back edges
|
|
//If a->b is a backedge
|
|
//then incoming dummy edge is root->b
|
|
//and outgoing dummy edge is a->exit
|
|
//changed
|
|
void addDummyEdges(vector<Edge > &stDummy,
|
|
vector<Edge > &exDummy,
|
|
Graph &g, vector<Edge> &be){
|
|
for(vector<Edge >::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
|
|
Edge ed=*VI;
|
|
Node *first=ed.getFirst();
|
|
Node *second=ed.getSecond();
|
|
g.removeEdge(ed);
|
|
|
|
if(!(*second==*(g.getRoot()))){
|
|
Edge *st=new Edge(g.getRoot(), second, ed.getWeight(), ed.getRandId());
|
|
stDummy.push_back(*st);
|
|
g.addEdgeForce(*st);
|
|
}
|
|
|
|
if(!(*first==*(g.getExit()))){
|
|
Edge *ex=new Edge(first, g.getExit(), ed.getWeight(), ed.getRandId());
|
|
exDummy.push_back(*ex);
|
|
g.addEdgeForce(*ex);
|
|
}
|
|
}
|
|
}
|
|
|
|
//print a given edge in the form BB1Label->BB2Label
|
|
void printEdge(Edge ed){
|
|
cerr<<((ed.getFirst())->getElement())
|
|
->getName()<<"->"<<((ed.getSecond())
|
|
->getElement())->getName()<<
|
|
":"<<ed.getWeight()<<" rndId::"<<ed.getRandId()<<"\n";
|
|
}
|
|
|
|
//Move the incoming dummy edge code and outgoing dummy
|
|
//edge code over to the corresponding back edge
|
|
static void moveDummyCode(vector<Edge> &stDummy,
|
|
vector<Edge> &exDummy,
|
|
vector<Edge> &be,
|
|
map<Edge, getEdgeCode *, EdgeCompare2> &insertions,
|
|
Graph &g){
|
|
typedef vector<Edge >::iterator vec_iter;
|
|
|
|
map<Edge,getEdgeCode *, EdgeCompare2> temp;
|
|
//iterate over edges with code
|
|
std::vector<Edge> toErase;
|
|
for(map<Edge,getEdgeCode *, EdgeCompare2>::iterator MI=insertions.begin(),
|
|
ME=insertions.end(); MI!=ME; ++MI){
|
|
Edge ed=MI->first;
|
|
getEdgeCode *edCd=MI->second;
|
|
|
|
///---new code
|
|
//iterate over be, and check if its starts and end vertices hv code
|
|
for(vector<Edge>::iterator BEI=be.begin(), BEE=be.end(); BEI!=BEE; ++BEI){
|
|
if(ed.getRandId()==BEI->getRandId()){
|
|
|
|
if(temp[*BEI]==0)
|
|
temp[*BEI]=new getEdgeCode();
|
|
|
|
//so ed is either in st, or ex!
|
|
if(ed.getFirst()==g.getRoot()){
|
|
|
|
//so its in stDummy
|
|
temp[*BEI]->setCdIn(edCd);
|
|
toErase.push_back(ed);
|
|
}
|
|
else if(ed.getSecond()==g.getExit()){
|
|
|
|
//so its in exDummy
|
|
toErase.push_back(ed);
|
|
temp[*BEI]->setCdOut(edCd);
|
|
}
|
|
else{
|
|
assert(false && "Not found in either start or end! Rand failed?");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for(vector<Edge >::iterator vmi=toErase.begin(), vme=toErase.end(); vmi!=vme;
|
|
++vmi){
|
|
insertions.erase(*vmi);
|
|
g.removeEdgeWithWt(*vmi);
|
|
}
|
|
|
|
for(map<Edge,getEdgeCode *, EdgeCompare2>::iterator MI=temp.begin(),
|
|
ME=temp.end(); MI!=ME; ++MI){
|
|
insertions[MI->first]=MI->second;
|
|
}
|
|
|
|
#ifdef DEBUG_PATH_PROFILES
|
|
cerr<<"size of deletions: "<<toErase.size()<<"\n";
|
|
cerr<<"SIZE OF INSERTIONS AFTER DEL "<<insertions.size()<<"\n";
|
|
#endif
|
|
|
|
}
|
|
|
|
//Do graph processing: to determine minimal edge increments,
|
|
//appropriate code insertions etc and insert the code at
|
|
//appropriate locations
|
|
void processGraph(Graph &g,
|
|
Instruction *rInst,
|
|
Value *countInst,
|
|
vector<Edge >& be,
|
|
vector<Edge >& stDummy,
|
|
vector<Edge >& exDummy,
|
|
int numPaths, int MethNo,
|
|
Value *threshold){
|
|
|
|
//Given a graph: with exit->root edge, do the following in seq:
|
|
//1. get back edges
|
|
//2. insert dummy edges and remove back edges
|
|
//3. get edge assignments
|
|
//4. Get Max spanning tree of graph:
|
|
// -Make graph g2=g undirectional
|
|
// -Get Max spanning tree t
|
|
// -Make t undirectional
|
|
// -remove edges from t not in graph g
|
|
//5. Get edge increments
|
|
//6. Get code insertions
|
|
//7. move code on dummy edges over to the back edges
|
|
|
|
|
|
//This is used as maximum "weight" for
|
|
//priority queue
|
|
//This would hold all
|
|
//right as long as number of paths in the graph
|
|
//is less than this
|
|
const int Infinity=99999999;
|
|
|
|
|
|
//step 1-3 are already done on the graph when this function is called
|
|
DEBUG(printGraph(g));
|
|
|
|
//step 4: Get Max spanning tree of graph
|
|
|
|
//now insert exit to root edge
|
|
//if its there earlier, remove it!
|
|
//assign it weight Infinity
|
|
//so that this edge IS ALWAYS IN spanning tree
|
|
//Note than edges in spanning tree do not get
|
|
//instrumented: and we do not want the
|
|
//edge exit->root to get instrumented
|
|
//as it MAY BE a dummy edge
|
|
Edge ed(g.getExit(),g.getRoot(),Infinity);
|
|
g.addEdge(ed,Infinity);
|
|
Graph g2=g;
|
|
|
|
//make g2 undirectional: this gives a better
|
|
//maximal spanning tree
|
|
g2.makeUnDirectional();
|
|
DEBUG(printGraph(g2));
|
|
|
|
Graph *t=g2.getMaxSpanningTree();
|
|
#ifdef DEBUG_PATH_PROFILES
|
|
std::cerr<<"Original maxspanning tree\n";
|
|
printGraph(*t);
|
|
#endif
|
|
//now edges of tree t have weights reversed
|
|
//(negative) because the algorithm used
|
|
//to find max spanning tree is
|
|
//actually for finding min spanning tree
|
|
//so get back the original weights
|
|
t->reverseWts();
|
|
|
|
//Ordinarily, the graph is directional
|
|
//lets converts the graph into an
|
|
//undirectional graph
|
|
//This is done by adding an edge
|
|
//v->u for all existing edges u->v
|
|
t->makeUnDirectional();
|
|
|
|
//Given a tree t, and a "directed graph" g
|
|
//replace the edges in the tree t with edges that exist in graph
|
|
//The tree is formed from "undirectional" copy of graph
|
|
//So whatever edges the tree has, the undirectional graph
|
|
//would have too. This function corrects some of the directions in
|
|
//the tree so that now, all edge directions in the tree match
|
|
//the edge directions of corresponding edges in the directed graph
|
|
removeTreeEdges(g, *t);
|
|
|
|
#ifdef DEBUG_PATH_PROFILES
|
|
cerr<<"Final Spanning tree---------\n";
|
|
printGraph(*t);
|
|
cerr<<"-------end spanning tree\n";
|
|
#endif
|
|
|
|
//now remove the exit->root node
|
|
//and re-add it with weight 0
|
|
//since infinite weight is kinda confusing
|
|
g.removeEdge(ed);
|
|
Edge edNew(g.getExit(), g.getRoot(),0);
|
|
g.addEdge(edNew,0);
|
|
if(t->hasEdge(ed)){
|
|
t->removeEdge(ed);
|
|
t->addEdge(edNew,0);
|
|
}
|
|
|
|
DEBUG(printGraph(g);
|
|
printGraph(*t));
|
|
|
|
//step 5: Get edge increments
|
|
|
|
//Now we select a subset of all edges
|
|
//and assign them some values such that
|
|
//if we consider just this subset, it still represents
|
|
//the path sum along any path in the graph
|
|
|
|
map<Edge, int, EdgeCompare2> increment=getEdgeIncrements(g,*t, be);
|
|
#ifdef DEBUG_PATH_PROFILES
|
|
//print edge increments for debugging
|
|
std::cerr<<"Edge Increments------\n";
|
|
for(map<Edge, int, EdgeCompare2>::iterator MMI=increment.begin(), MME=increment.end(); MMI != MME; ++MMI){
|
|
printEdge(MMI->first);
|
|
std::cerr<<"Increment for above:"<<MMI->second<<"\n";
|
|
}
|
|
std::cerr<<"-------end of edge increments\n";
|
|
#endif
|
|
|
|
|
|
//step 6: Get code insertions
|
|
|
|
//Based on edgeIncrements (above), now obtain
|
|
//the kind of code to be inserted along an edge
|
|
//The idea here is to minimize the computation
|
|
//by inserting only the needed code
|
|
vector<Edge> chords;
|
|
getChords(chords, g, *t);
|
|
|
|
|
|
map<Edge, getEdgeCode *, EdgeCompare2> codeInsertions;
|
|
getCodeInsertions(g, codeInsertions, chords,increment);
|
|
|
|
#ifdef DEBUG_PATH_PROFILES
|
|
//print edges with code for debugging
|
|
cerr<<"Code inserted in following---------------\n";
|
|
for(map<Edge, getEdgeCode *, EdgeCompare2>::iterator cd_i=codeInsertions.begin(),
|
|
cd_e=codeInsertions.end(); cd_i!=cd_e; ++cd_i){
|
|
printEdge(cd_i->first);
|
|
cerr<<cd_i->second->getCond()<<":"<<cd_i->second->getInc()<<"\n";
|
|
}
|
|
cerr<<"-----end insertions\n";
|
|
#endif
|
|
|
|
//step 7: move code on dummy edges over to the back edges
|
|
|
|
//Move the incoming dummy edge code and outgoing dummy
|
|
//edge code over to the corresponding back edge
|
|
|
|
moveDummyCode(stDummy, exDummy, be, codeInsertions, g);
|
|
|
|
#ifdef DEBUG_PATH_PROFILES
|
|
//debugging info
|
|
cerr<<"After moving dummy code\n";
|
|
for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
|
|
cd_e=codeInsertions.end(); cd_i != cd_e; ++cd_i){
|
|
printEdge(cd_i->first);
|
|
cerr<<cd_i->second->getCond()<<":"
|
|
<<cd_i->second->getInc()<<"\n";
|
|
}
|
|
cerr<<"Dummy end------------\n";
|
|
#endif
|
|
|
|
|
|
//see what it looks like...
|
|
//now insert code along edges which have codes on them
|
|
for(map<Edge, getEdgeCode *>::iterator MI=codeInsertions.begin(),
|
|
ME=codeInsertions.end(); MI!=ME; ++MI){
|
|
Edge ed=MI->first;
|
|
insertBB(ed, MI->second, rInst, countInst, numPaths, MethNo, threshold);
|
|
}
|
|
}
|
|
|
|
//print the graph (for debugging)
|
|
void printGraph(Graph &g){
|
|
vector<Node *> lt=g.getAllNodes();
|
|
cerr<<"Graph---------------------\n";
|
|
for(vector<Node *>::iterator LI=lt.begin();
|
|
LI!=lt.end(); ++LI){
|
|
cerr<<((*LI)->getElement())->getName()<<"->";
|
|
Graph::nodeList nl=g.getNodeList(*LI);
|
|
for(Graph::nodeList::iterator NI=nl.begin();
|
|
NI!=nl.end(); ++NI){
|
|
cerr<<":"<<"("<<(NI->element->getElement())
|
|
->getName()<<":"<<NI->element->getWeight()<<","<<NI->weight<<","
|
|
<<NI->randId<<")";
|
|
}
|
|
cerr<<"\n";
|
|
}
|
|
cerr<<"--------------------Graph\n";
|
|
}
|