mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-04-04 00:31:54 +00:00

with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
1063 lines
29 KiB
C++
1063 lines
29 KiB
C++
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/Passes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include <cctype>
|
|
#include <cstdio>
|
|
#include <map>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "../include/KaleidoscopeJIT.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::orc;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lexer
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
|
|
// of these for known things.
|
|
enum Token {
|
|
tok_eof = -1,
|
|
|
|
// commands
|
|
tok_def = -2,
|
|
tok_extern = -3,
|
|
|
|
// primary
|
|
tok_identifier = -4,
|
|
tok_number = -5,
|
|
|
|
// control
|
|
tok_if = -6,
|
|
tok_then = -7,
|
|
tok_else = -8,
|
|
tok_for = -9,
|
|
tok_in = -10,
|
|
|
|
// operators
|
|
tok_binary = -11,
|
|
tok_unary = -12
|
|
};
|
|
|
|
static std::string IdentifierStr; // Filled in if tok_identifier
|
|
static double NumVal; // Filled in if tok_number
|
|
|
|
/// gettok - Return the next token from standard input.
|
|
static int gettok() {
|
|
static int LastChar = ' ';
|
|
|
|
// Skip any whitespace.
|
|
while (isspace(LastChar))
|
|
LastChar = getchar();
|
|
|
|
if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
|
|
IdentifierStr = LastChar;
|
|
while (isalnum((LastChar = getchar())))
|
|
IdentifierStr += LastChar;
|
|
|
|
if (IdentifierStr == "def")
|
|
return tok_def;
|
|
if (IdentifierStr == "extern")
|
|
return tok_extern;
|
|
if (IdentifierStr == "if")
|
|
return tok_if;
|
|
if (IdentifierStr == "then")
|
|
return tok_then;
|
|
if (IdentifierStr == "else")
|
|
return tok_else;
|
|
if (IdentifierStr == "for")
|
|
return tok_for;
|
|
if (IdentifierStr == "in")
|
|
return tok_in;
|
|
if (IdentifierStr == "binary")
|
|
return tok_binary;
|
|
if (IdentifierStr == "unary")
|
|
return tok_unary;
|
|
return tok_identifier;
|
|
}
|
|
|
|
if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
|
|
std::string NumStr;
|
|
do {
|
|
NumStr += LastChar;
|
|
LastChar = getchar();
|
|
} while (isdigit(LastChar) || LastChar == '.');
|
|
|
|
NumVal = strtod(NumStr.c_str(), 0);
|
|
return tok_number;
|
|
}
|
|
|
|
if (LastChar == '#') {
|
|
// Comment until end of line.
|
|
do
|
|
LastChar = getchar();
|
|
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
|
|
|
|
if (LastChar != EOF)
|
|
return gettok();
|
|
}
|
|
|
|
// Check for end of file. Don't eat the EOF.
|
|
if (LastChar == EOF)
|
|
return tok_eof;
|
|
|
|
// Otherwise, just return the character as its ascii value.
|
|
int ThisChar = LastChar;
|
|
LastChar = getchar();
|
|
return ThisChar;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Abstract Syntax Tree (aka Parse Tree)
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
/// ExprAST - Base class for all expression nodes.
|
|
class ExprAST {
|
|
public:
|
|
virtual ~ExprAST() {}
|
|
virtual Value *codegen() = 0;
|
|
};
|
|
|
|
/// NumberExprAST - Expression class for numeric literals like "1.0".
|
|
class NumberExprAST : public ExprAST {
|
|
double Val;
|
|
|
|
public:
|
|
NumberExprAST(double Val) : Val(Val) {}
|
|
Value *codegen() override;
|
|
};
|
|
|
|
/// VariableExprAST - Expression class for referencing a variable, like "a".
|
|
class VariableExprAST : public ExprAST {
|
|
std::string Name;
|
|
|
|
public:
|
|
VariableExprAST(const std::string &Name) : Name(Name) {}
|
|
Value *codegen() override;
|
|
};
|
|
|
|
/// UnaryExprAST - Expression class for a unary operator.
|
|
class UnaryExprAST : public ExprAST {
|
|
char Opcode;
|
|
std::unique_ptr<ExprAST> Operand;
|
|
|
|
public:
|
|
UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
|
|
: Opcode(Opcode), Operand(std::move(Operand)) {}
|
|
Value *codegen() override;
|
|
};
|
|
|
|
/// BinaryExprAST - Expression class for a binary operator.
|
|
class BinaryExprAST : public ExprAST {
|
|
char Op;
|
|
std::unique_ptr<ExprAST> LHS, RHS;
|
|
|
|
public:
|
|
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
|
|
std::unique_ptr<ExprAST> RHS)
|
|
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
|
|
Value *codegen() override;
|
|
};
|
|
|
|
/// CallExprAST - Expression class for function calls.
|
|
class CallExprAST : public ExprAST {
|
|
std::string Callee;
|
|
std::vector<std::unique_ptr<ExprAST>> Args;
|
|
|
|
public:
|
|
CallExprAST(const std::string &Callee,
|
|
std::vector<std::unique_ptr<ExprAST>> Args)
|
|
: Callee(Callee), Args(std::move(Args)) {}
|
|
Value *codegen() override;
|
|
};
|
|
|
|
/// IfExprAST - Expression class for if/then/else.
|
|
class IfExprAST : public ExprAST {
|
|
std::unique_ptr<ExprAST> Cond, Then, Else;
|
|
|
|
public:
|
|
IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
|
|
std::unique_ptr<ExprAST> Else)
|
|
: Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
|
|
Value *codegen() override;
|
|
};
|
|
|
|
/// ForExprAST - Expression class for for/in.
|
|
class ForExprAST : public ExprAST {
|
|
std::string VarName;
|
|
std::unique_ptr<ExprAST> Start, End, Step, Body;
|
|
|
|
public:
|
|
ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
|
|
std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
|
|
std::unique_ptr<ExprAST> Body)
|
|
: VarName(VarName), Start(std::move(Start)), End(std::move(End)),
|
|
Step(std::move(Step)), Body(std::move(Body)) {}
|
|
Value *codegen() override;
|
|
};
|
|
|
|
/// PrototypeAST - This class represents the "prototype" for a function,
|
|
/// which captures its name, and its argument names (thus implicitly the number
|
|
/// of arguments the function takes), as well as if it is an operator.
|
|
class PrototypeAST {
|
|
std::string Name;
|
|
std::vector<std::string> Args;
|
|
bool IsOperator;
|
|
unsigned Precedence; // Precedence if a binary op.
|
|
|
|
public:
|
|
PrototypeAST(const std::string &Name, std::vector<std::string> Args,
|
|
bool IsOperator = false, unsigned Prec = 0)
|
|
: Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
|
|
Precedence(Prec) {}
|
|
Function *codegen();
|
|
const std::string &getName() const { return Name; }
|
|
|
|
bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
|
|
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
|
|
|
|
char getOperatorName() const {
|
|
assert(isUnaryOp() || isBinaryOp());
|
|
return Name[Name.size() - 1];
|
|
}
|
|
|
|
unsigned getBinaryPrecedence() const { return Precedence; }
|
|
};
|
|
|
|
/// FunctionAST - This class represents a function definition itself.
|
|
class FunctionAST {
|
|
std::unique_ptr<PrototypeAST> Proto;
|
|
std::unique_ptr<ExprAST> Body;
|
|
|
|
public:
|
|
FunctionAST(std::unique_ptr<PrototypeAST> Proto,
|
|
std::unique_ptr<ExprAST> Body)
|
|
: Proto(std::move(Proto)), Body(std::move(Body)) {}
|
|
Function *codegen();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Parser
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
|
|
/// token the parser is looking at. getNextToken reads another token from the
|
|
/// lexer and updates CurTok with its results.
|
|
static int CurTok;
|
|
static int getNextToken() { return CurTok = gettok(); }
|
|
|
|
/// BinopPrecedence - This holds the precedence for each binary operator that is
|
|
/// defined.
|
|
static std::map<char, int> BinopPrecedence;
|
|
|
|
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
|
|
static int GetTokPrecedence() {
|
|
if (!isascii(CurTok))
|
|
return -1;
|
|
|
|
// Make sure it's a declared binop.
|
|
int TokPrec = BinopPrecedence[CurTok];
|
|
if (TokPrec <= 0)
|
|
return -1;
|
|
return TokPrec;
|
|
}
|
|
|
|
/// Error* - These are little helper functions for error handling.
|
|
std::unique_ptr<ExprAST> Error(const char *Str) {
|
|
fprintf(stderr, "Error: %s\n", Str);
|
|
return nullptr;
|
|
}
|
|
std::unique_ptr<PrototypeAST> ErrorP(const char *Str) {
|
|
Error(Str);
|
|
return nullptr;
|
|
}
|
|
|
|
static std::unique_ptr<ExprAST> ParseExpression();
|
|
|
|
/// numberexpr ::= number
|
|
static std::unique_ptr<ExprAST> ParseNumberExpr() {
|
|
auto Result = llvm::make_unique<NumberExprAST>(NumVal);
|
|
getNextToken(); // consume the number
|
|
return std::move(Result);
|
|
}
|
|
|
|
/// parenexpr ::= '(' expression ')'
|
|
static std::unique_ptr<ExprAST> ParseParenExpr() {
|
|
getNextToken(); // eat (.
|
|
auto V = ParseExpression();
|
|
if (!V)
|
|
return nullptr;
|
|
|
|
if (CurTok != ')')
|
|
return Error("expected ')'");
|
|
getNextToken(); // eat ).
|
|
return V;
|
|
}
|
|
|
|
/// identifierexpr
|
|
/// ::= identifier
|
|
/// ::= identifier '(' expression* ')'
|
|
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
|
|
std::string IdName = IdentifierStr;
|
|
|
|
getNextToken(); // eat identifier.
|
|
|
|
if (CurTok != '(') // Simple variable ref.
|
|
return llvm::make_unique<VariableExprAST>(IdName);
|
|
|
|
// Call.
|
|
getNextToken(); // eat (
|
|
std::vector<std::unique_ptr<ExprAST>> Args;
|
|
if (CurTok != ')') {
|
|
while (1) {
|
|
if (auto Arg = ParseExpression())
|
|
Args.push_back(std::move(Arg));
|
|
else
|
|
return nullptr;
|
|
|
|
if (CurTok == ')')
|
|
break;
|
|
|
|
if (CurTok != ',')
|
|
return Error("Expected ')' or ',' in argument list");
|
|
getNextToken();
|
|
}
|
|
}
|
|
|
|
// Eat the ')'.
|
|
getNextToken();
|
|
|
|
return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
|
|
}
|
|
|
|
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
|
|
static std::unique_ptr<ExprAST> ParseIfExpr() {
|
|
getNextToken(); // eat the if.
|
|
|
|
// condition.
|
|
auto Cond = ParseExpression();
|
|
if (!Cond)
|
|
return nullptr;
|
|
|
|
if (CurTok != tok_then)
|
|
return Error("expected then");
|
|
getNextToken(); // eat the then
|
|
|
|
auto Then = ParseExpression();
|
|
if (!Then)
|
|
return nullptr;
|
|
|
|
if (CurTok != tok_else)
|
|
return Error("expected else");
|
|
|
|
getNextToken();
|
|
|
|
auto Else = ParseExpression();
|
|
if (!Else)
|
|
return nullptr;
|
|
|
|
return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
|
|
std::move(Else));
|
|
}
|
|
|
|
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
|
|
static std::unique_ptr<ExprAST> ParseForExpr() {
|
|
getNextToken(); // eat the for.
|
|
|
|
if (CurTok != tok_identifier)
|
|
return Error("expected identifier after for");
|
|
|
|
std::string IdName = IdentifierStr;
|
|
getNextToken(); // eat identifier.
|
|
|
|
if (CurTok != '=')
|
|
return Error("expected '=' after for");
|
|
getNextToken(); // eat '='.
|
|
|
|
auto Start = ParseExpression();
|
|
if (!Start)
|
|
return nullptr;
|
|
if (CurTok != ',')
|
|
return Error("expected ',' after for start value");
|
|
getNextToken();
|
|
|
|
auto End = ParseExpression();
|
|
if (!End)
|
|
return nullptr;
|
|
|
|
// The step value is optional.
|
|
std::unique_ptr<ExprAST> Step;
|
|
if (CurTok == ',') {
|
|
getNextToken();
|
|
Step = ParseExpression();
|
|
if (!Step)
|
|
return nullptr;
|
|
}
|
|
|
|
if (CurTok != tok_in)
|
|
return Error("expected 'in' after for");
|
|
getNextToken(); // eat 'in'.
|
|
|
|
auto Body = ParseExpression();
|
|
if (!Body)
|
|
return nullptr;
|
|
|
|
return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
|
|
std::move(Step), std::move(Body));
|
|
}
|
|
|
|
/// primary
|
|
/// ::= identifierexpr
|
|
/// ::= numberexpr
|
|
/// ::= parenexpr
|
|
/// ::= ifexpr
|
|
/// ::= forexpr
|
|
static std::unique_ptr<ExprAST> ParsePrimary() {
|
|
switch (CurTok) {
|
|
default:
|
|
return Error("unknown token when expecting an expression");
|
|
case tok_identifier:
|
|
return ParseIdentifierExpr();
|
|
case tok_number:
|
|
return ParseNumberExpr();
|
|
case '(':
|
|
return ParseParenExpr();
|
|
case tok_if:
|
|
return ParseIfExpr();
|
|
case tok_for:
|
|
return ParseForExpr();
|
|
}
|
|
}
|
|
|
|
/// unary
|
|
/// ::= primary
|
|
/// ::= '!' unary
|
|
static std::unique_ptr<ExprAST> ParseUnary() {
|
|
// If the current token is not an operator, it must be a primary expr.
|
|
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
|
|
return ParsePrimary();
|
|
|
|
// If this is a unary operator, read it.
|
|
int Opc = CurTok;
|
|
getNextToken();
|
|
if (auto Operand = ParseUnary())
|
|
return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
|
|
return nullptr;
|
|
}
|
|
|
|
/// binoprhs
|
|
/// ::= ('+' unary)*
|
|
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
|
|
std::unique_ptr<ExprAST> LHS) {
|
|
// If this is a binop, find its precedence.
|
|
while (1) {
|
|
int TokPrec = GetTokPrecedence();
|
|
|
|
// If this is a binop that binds at least as tightly as the current binop,
|
|
// consume it, otherwise we are done.
|
|
if (TokPrec < ExprPrec)
|
|
return LHS;
|
|
|
|
// Okay, we know this is a binop.
|
|
int BinOp = CurTok;
|
|
getNextToken(); // eat binop
|
|
|
|
// Parse the unary expression after the binary operator.
|
|
auto RHS = ParseUnary();
|
|
if (!RHS)
|
|
return nullptr;
|
|
|
|
// If BinOp binds less tightly with RHS than the operator after RHS, let
|
|
// the pending operator take RHS as its LHS.
|
|
int NextPrec = GetTokPrecedence();
|
|
if (TokPrec < NextPrec) {
|
|
RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
|
|
if (!RHS)
|
|
return nullptr;
|
|
}
|
|
|
|
// Merge LHS/RHS.
|
|
LHS =
|
|
llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
|
|
}
|
|
}
|
|
|
|
/// expression
|
|
/// ::= unary binoprhs
|
|
///
|
|
static std::unique_ptr<ExprAST> ParseExpression() {
|
|
auto LHS = ParseUnary();
|
|
if (!LHS)
|
|
return nullptr;
|
|
|
|
return ParseBinOpRHS(0, std::move(LHS));
|
|
}
|
|
|
|
/// prototype
|
|
/// ::= id '(' id* ')'
|
|
/// ::= binary LETTER number? (id, id)
|
|
/// ::= unary LETTER (id)
|
|
static std::unique_ptr<PrototypeAST> ParsePrototype() {
|
|
std::string FnName;
|
|
|
|
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
|
|
unsigned BinaryPrecedence = 30;
|
|
|
|
switch (CurTok) {
|
|
default:
|
|
return ErrorP("Expected function name in prototype");
|
|
case tok_identifier:
|
|
FnName = IdentifierStr;
|
|
Kind = 0;
|
|
getNextToken();
|
|
break;
|
|
case tok_unary:
|
|
getNextToken();
|
|
if (!isascii(CurTok))
|
|
return ErrorP("Expected unary operator");
|
|
FnName = "unary";
|
|
FnName += (char)CurTok;
|
|
Kind = 1;
|
|
getNextToken();
|
|
break;
|
|
case tok_binary:
|
|
getNextToken();
|
|
if (!isascii(CurTok))
|
|
return ErrorP("Expected binary operator");
|
|
FnName = "binary";
|
|
FnName += (char)CurTok;
|
|
Kind = 2;
|
|
getNextToken();
|
|
|
|
// Read the precedence if present.
|
|
if (CurTok == tok_number) {
|
|
if (NumVal < 1 || NumVal > 100)
|
|
return ErrorP("Invalid precedecnce: must be 1..100");
|
|
BinaryPrecedence = (unsigned)NumVal;
|
|
getNextToken();
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (CurTok != '(')
|
|
return ErrorP("Expected '(' in prototype");
|
|
|
|
std::vector<std::string> ArgNames;
|
|
while (getNextToken() == tok_identifier)
|
|
ArgNames.push_back(IdentifierStr);
|
|
if (CurTok != ')')
|
|
return ErrorP("Expected ')' in prototype");
|
|
|
|
// success.
|
|
getNextToken(); // eat ')'.
|
|
|
|
// Verify right number of names for operator.
|
|
if (Kind && ArgNames.size() != Kind)
|
|
return ErrorP("Invalid number of operands for operator");
|
|
|
|
return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
|
|
BinaryPrecedence);
|
|
}
|
|
|
|
/// definition ::= 'def' prototype expression
|
|
static std::unique_ptr<FunctionAST> ParseDefinition() {
|
|
getNextToken(); // eat def.
|
|
auto Proto = ParsePrototype();
|
|
if (!Proto)
|
|
return nullptr;
|
|
|
|
if (auto E = ParseExpression())
|
|
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
|
|
return nullptr;
|
|
}
|
|
|
|
/// toplevelexpr ::= expression
|
|
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
|
|
if (auto E = ParseExpression()) {
|
|
// Make an anonymous proto.
|
|
auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
|
|
std::vector<std::string>());
|
|
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// external ::= 'extern' prototype
|
|
static std::unique_ptr<PrototypeAST> ParseExtern() {
|
|
getNextToken(); // eat extern.
|
|
return ParsePrototype();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code Generation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static std::unique_ptr<Module> TheModule;
|
|
static IRBuilder<> Builder(getGlobalContext());
|
|
static std::map<std::string, Value *> NamedValues;
|
|
static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
|
|
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
|
|
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
|
|
|
|
Value *ErrorV(const char *Str) {
|
|
Error(Str);
|
|
return nullptr;
|
|
}
|
|
|
|
Function *getFunction(std::string Name) {
|
|
// First, see if the function has already been added to the current module.
|
|
if (auto *F = TheModule->getFunction(Name))
|
|
return F;
|
|
|
|
// If not, check whether we can codegen the declaration from some existing
|
|
// prototype.
|
|
auto FI = FunctionProtos.find(Name);
|
|
if (FI != FunctionProtos.end())
|
|
return FI->second->codegen();
|
|
|
|
// If no existing prototype exists, return null.
|
|
return nullptr;
|
|
}
|
|
|
|
Value *NumberExprAST::codegen() {
|
|
return ConstantFP::get(getGlobalContext(), APFloat(Val));
|
|
}
|
|
|
|
Value *VariableExprAST::codegen() {
|
|
// Look this variable up in the function.
|
|
Value *V = NamedValues[Name];
|
|
if (!V)
|
|
return ErrorV("Unknown variable name");
|
|
return V;
|
|
}
|
|
|
|
Value *UnaryExprAST::codegen() {
|
|
Value *OperandV = Operand->codegen();
|
|
if (!OperandV)
|
|
return nullptr;
|
|
|
|
Function *F = getFunction(std::string("unary") + Opcode);
|
|
if (!F)
|
|
return ErrorV("Unknown unary operator");
|
|
|
|
return Builder.CreateCall(F, OperandV, "unop");
|
|
}
|
|
|
|
Value *BinaryExprAST::codegen() {
|
|
Value *L = LHS->codegen();
|
|
Value *R = RHS->codegen();
|
|
if (!L || !R)
|
|
return nullptr;
|
|
|
|
switch (Op) {
|
|
case '+':
|
|
return Builder.CreateFAdd(L, R, "addtmp");
|
|
case '-':
|
|
return Builder.CreateFSub(L, R, "subtmp");
|
|
case '*':
|
|
return Builder.CreateFMul(L, R, "multmp");
|
|
case '<':
|
|
L = Builder.CreateFCmpULT(L, R, "cmptmp");
|
|
// Convert bool 0/1 to double 0.0 or 1.0
|
|
return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
|
|
"booltmp");
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// If it wasn't a builtin binary operator, it must be a user defined one. Emit
|
|
// a call to it.
|
|
Function *F = getFunction(std::string("binary") + Op);
|
|
assert(F && "binary operator not found!");
|
|
|
|
Value *Ops[] = {L, R};
|
|
return Builder.CreateCall(F, Ops, "binop");
|
|
}
|
|
|
|
Value *CallExprAST::codegen() {
|
|
// Look up the name in the global module table.
|
|
Function *CalleeF = getFunction(Callee);
|
|
if (!CalleeF)
|
|
return ErrorV("Unknown function referenced");
|
|
|
|
// If argument mismatch error.
|
|
if (CalleeF->arg_size() != Args.size())
|
|
return ErrorV("Incorrect # arguments passed");
|
|
|
|
std::vector<Value *> ArgsV;
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
ArgsV.push_back(Args[i]->codegen());
|
|
if (!ArgsV.back())
|
|
return nullptr;
|
|
}
|
|
|
|
return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
|
|
}
|
|
|
|
Value *IfExprAST::codegen() {
|
|
Value *CondV = Cond->codegen();
|
|
if (!CondV)
|
|
return nullptr;
|
|
|
|
// Convert condition to a bool by comparing equal to 0.0.
|
|
CondV = Builder.CreateFCmpONE(
|
|
CondV, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "ifcond");
|
|
|
|
Function *TheFunction = Builder.GetInsertBlock()->getParent();
|
|
|
|
// Create blocks for the then and else cases. Insert the 'then' block at the
|
|
// end of the function.
|
|
BasicBlock *ThenBB =
|
|
BasicBlock::Create(getGlobalContext(), "then", TheFunction);
|
|
BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
|
|
BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
|
|
|
|
Builder.CreateCondBr(CondV, ThenBB, ElseBB);
|
|
|
|
// Emit then value.
|
|
Builder.SetInsertPoint(ThenBB);
|
|
|
|
Value *ThenV = Then->codegen();
|
|
if (!ThenV)
|
|
return nullptr;
|
|
|
|
Builder.CreateBr(MergeBB);
|
|
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
|
|
ThenBB = Builder.GetInsertBlock();
|
|
|
|
// Emit else block.
|
|
TheFunction->getBasicBlockList().push_back(ElseBB);
|
|
Builder.SetInsertPoint(ElseBB);
|
|
|
|
Value *ElseV = Else->codegen();
|
|
if (!ElseV)
|
|
return nullptr;
|
|
|
|
Builder.CreateBr(MergeBB);
|
|
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
|
|
ElseBB = Builder.GetInsertBlock();
|
|
|
|
// Emit merge block.
|
|
TheFunction->getBasicBlockList().push_back(MergeBB);
|
|
Builder.SetInsertPoint(MergeBB);
|
|
PHINode *PN =
|
|
Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, "iftmp");
|
|
|
|
PN->addIncoming(ThenV, ThenBB);
|
|
PN->addIncoming(ElseV, ElseBB);
|
|
return PN;
|
|
}
|
|
|
|
// Output for-loop as:
|
|
// ...
|
|
// start = startexpr
|
|
// goto loop
|
|
// loop:
|
|
// variable = phi [start, loopheader], [nextvariable, loopend]
|
|
// ...
|
|
// bodyexpr
|
|
// ...
|
|
// loopend:
|
|
// step = stepexpr
|
|
// nextvariable = variable + step
|
|
// endcond = endexpr
|
|
// br endcond, loop, endloop
|
|
// outloop:
|
|
Value *ForExprAST::codegen() {
|
|
// Emit the start code first, without 'variable' in scope.
|
|
Value *StartVal = Start->codegen();
|
|
if (!StartVal)
|
|
return nullptr;
|
|
|
|
// Make the new basic block for the loop header, inserting after current
|
|
// block.
|
|
Function *TheFunction = Builder.GetInsertBlock()->getParent();
|
|
BasicBlock *PreheaderBB = Builder.GetInsertBlock();
|
|
BasicBlock *LoopBB =
|
|
BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
|
|
|
|
// Insert an explicit fall through from the current block to the LoopBB.
|
|
Builder.CreateBr(LoopBB);
|
|
|
|
// Start insertion in LoopBB.
|
|
Builder.SetInsertPoint(LoopBB);
|
|
|
|
// Start the PHI node with an entry for Start.
|
|
PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()),
|
|
2, VarName.c_str());
|
|
Variable->addIncoming(StartVal, PreheaderBB);
|
|
|
|
// Within the loop, the variable is defined equal to the PHI node. If it
|
|
// shadows an existing variable, we have to restore it, so save it now.
|
|
Value *OldVal = NamedValues[VarName];
|
|
NamedValues[VarName] = Variable;
|
|
|
|
// Emit the body of the loop. This, like any other expr, can change the
|
|
// current BB. Note that we ignore the value computed by the body, but don't
|
|
// allow an error.
|
|
if (!Body->codegen())
|
|
return nullptr;
|
|
|
|
// Emit the step value.
|
|
Value *StepVal = nullptr;
|
|
if (Step) {
|
|
StepVal = Step->codegen();
|
|
if (!StepVal)
|
|
return nullptr;
|
|
} else {
|
|
// If not specified, use 1.0.
|
|
StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
|
|
}
|
|
|
|
Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
|
|
|
|
// Compute the end condition.
|
|
Value *EndCond = End->codegen();
|
|
if (!EndCond)
|
|
return nullptr;
|
|
|
|
// Convert condition to a bool by comparing equal to 0.0.
|
|
EndCond = Builder.CreateFCmpONE(
|
|
EndCond, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "loopcond");
|
|
|
|
// Create the "after loop" block and insert it.
|
|
BasicBlock *LoopEndBB = Builder.GetInsertBlock();
|
|
BasicBlock *AfterBB =
|
|
BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
|
|
|
|
// Insert the conditional branch into the end of LoopEndBB.
|
|
Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
|
|
|
|
// Any new code will be inserted in AfterBB.
|
|
Builder.SetInsertPoint(AfterBB);
|
|
|
|
// Add a new entry to the PHI node for the backedge.
|
|
Variable->addIncoming(NextVar, LoopEndBB);
|
|
|
|
// Restore the unshadowed variable.
|
|
if (OldVal)
|
|
NamedValues[VarName] = OldVal;
|
|
else
|
|
NamedValues.erase(VarName);
|
|
|
|
// for expr always returns 0.0.
|
|
return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
|
|
}
|
|
|
|
Function *PrototypeAST::codegen() {
|
|
// Make the function type: double(double,double) etc.
|
|
std::vector<Type *> Doubles(Args.size(),
|
|
Type::getDoubleTy(getGlobalContext()));
|
|
FunctionType *FT =
|
|
FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false);
|
|
|
|
Function *F =
|
|
Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
|
|
|
|
// Set names for all arguments.
|
|
unsigned Idx = 0;
|
|
for (auto &Arg : F->args())
|
|
Arg.setName(Args[Idx++]);
|
|
|
|
return F;
|
|
}
|
|
|
|
Function *FunctionAST::codegen() {
|
|
// Transfer ownership of the prototype to the FunctionProtos map, but keep a
|
|
// reference to it for use below.
|
|
auto &P = *Proto;
|
|
FunctionProtos[Proto->getName()] = std::move(Proto);
|
|
Function *TheFunction = getFunction(P.getName());
|
|
if (!TheFunction)
|
|
return nullptr;
|
|
|
|
// If this is an operator, install it.
|
|
if (P.isBinaryOp())
|
|
BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
|
|
|
|
// Create a new basic block to start insertion into.
|
|
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
|
|
Builder.SetInsertPoint(BB);
|
|
|
|
// Record the function arguments in the NamedValues map.
|
|
NamedValues.clear();
|
|
for (auto &Arg : TheFunction->args())
|
|
NamedValues[Arg.getName()] = &Arg;
|
|
|
|
if (Value *RetVal = Body->codegen()) {
|
|
// Finish off the function.
|
|
Builder.CreateRet(RetVal);
|
|
|
|
// Validate the generated code, checking for consistency.
|
|
verifyFunction(*TheFunction);
|
|
|
|
// Run the optimizer on the function.
|
|
TheFPM->run(*TheFunction);
|
|
|
|
return TheFunction;
|
|
}
|
|
|
|
// Error reading body, remove function.
|
|
TheFunction->eraseFromParent();
|
|
|
|
if (P.isBinaryOp())
|
|
BinopPrecedence.erase(Proto->getOperatorName());
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-Level parsing and JIT Driver
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void InitializeModuleAndPassManager() {
|
|
// Open a new module.
|
|
TheModule = llvm::make_unique<Module>("my cool jit", getGlobalContext());
|
|
TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
|
|
|
|
// Create a new pass manager attached to it.
|
|
TheFPM = llvm::make_unique<legacy::FunctionPassManager>(TheModule.get());
|
|
|
|
// Do simple "peephole" optimizations and bit-twiddling optzns.
|
|
TheFPM->add(createInstructionCombiningPass());
|
|
// Reassociate expressions.
|
|
TheFPM->add(createReassociatePass());
|
|
// Eliminate Common SubExpressions.
|
|
TheFPM->add(createGVNPass());
|
|
// Simplify the control flow graph (deleting unreachable blocks, etc).
|
|
TheFPM->add(createCFGSimplificationPass());
|
|
|
|
TheFPM->doInitialization();
|
|
}
|
|
|
|
static void HandleDefinition() {
|
|
if (auto FnAST = ParseDefinition()) {
|
|
if (auto *FnIR = FnAST->codegen()) {
|
|
fprintf(stderr, "Read function definition:");
|
|
FnIR->dump();
|
|
TheJIT->addModule(std::move(TheModule));
|
|
InitializeModuleAndPassManager();
|
|
}
|
|
} else {
|
|
// Skip token for error recovery.
|
|
getNextToken();
|
|
}
|
|
}
|
|
|
|
static void HandleExtern() {
|
|
if (auto ProtoAST = ParseExtern()) {
|
|
if (auto *FnIR = ProtoAST->codegen()) {
|
|
fprintf(stderr, "Read extern: ");
|
|
FnIR->dump();
|
|
FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
|
|
}
|
|
} else {
|
|
// Skip token for error recovery.
|
|
getNextToken();
|
|
}
|
|
}
|
|
|
|
static void HandleTopLevelExpression() {
|
|
// Evaluate a top-level expression into an anonymous function.
|
|
if (auto FnAST = ParseTopLevelExpr()) {
|
|
if (FnAST->codegen()) {
|
|
|
|
// JIT the module containing the anonymous expression, keeping a handle so
|
|
// we can free it later.
|
|
auto H = TheJIT->addModule(std::move(TheModule));
|
|
InitializeModuleAndPassManager();
|
|
|
|
// Search the JIT for the __anon_expr symbol.
|
|
auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
|
|
assert(ExprSymbol && "Function not found");
|
|
|
|
// Get the symbol's address and cast it to the right type (takes no
|
|
// arguments, returns a double) so we can call it as a native function.
|
|
double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
|
|
fprintf(stderr, "Evaluated to %f\n", FP());
|
|
|
|
// Delete the anonymous expression module from the JIT.
|
|
TheJIT->removeModule(H);
|
|
}
|
|
} else {
|
|
// Skip token for error recovery.
|
|
getNextToken();
|
|
}
|
|
}
|
|
|
|
/// top ::= definition | external | expression | ';'
|
|
static void MainLoop() {
|
|
while (1) {
|
|
fprintf(stderr, "ready> ");
|
|
switch (CurTok) {
|
|
case tok_eof:
|
|
return;
|
|
case ';': // ignore top-level semicolons.
|
|
getNextToken();
|
|
break;
|
|
case tok_def:
|
|
HandleDefinition();
|
|
break;
|
|
case tok_extern:
|
|
HandleExtern();
|
|
break;
|
|
default:
|
|
HandleTopLevelExpression();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// "Library" functions that can be "extern'd" from user code.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// putchard - putchar that takes a double and returns 0.
|
|
extern "C" double putchard(double X) {
|
|
fputc((char)X, stderr);
|
|
return 0;
|
|
}
|
|
|
|
/// printd - printf that takes a double prints it as "%f\n", returning 0.
|
|
extern "C" double printd(double X) {
|
|
fprintf(stderr, "%f\n", X);
|
|
return 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Main driver code.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
int main() {
|
|
InitializeNativeTarget();
|
|
InitializeNativeTargetAsmPrinter();
|
|
InitializeNativeTargetAsmParser();
|
|
|
|
// Install standard binary operators.
|
|
// 1 is lowest precedence.
|
|
BinopPrecedence['<'] = 10;
|
|
BinopPrecedence['+'] = 20;
|
|
BinopPrecedence['-'] = 20;
|
|
BinopPrecedence['*'] = 40; // highest.
|
|
|
|
// Prime the first token.
|
|
fprintf(stderr, "ready> ");
|
|
getNextToken();
|
|
|
|
TheJIT = llvm::make_unique<KaleidoscopeJIT>();
|
|
|
|
InitializeModuleAndPassManager();
|
|
|
|
// Run the main "interpreter loop" now.
|
|
MainLoop();
|
|
|
|
return 0;
|
|
}
|