mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-27 05:55:40 +00:00
f18016728c
e.g. movl 4(%esp), %eax addl $4, %eax is 2 bytes shorter than movl $4, %eax addl 4(%esp), %eax llvm-svn: 60139
1597 lines
56 KiB
C++
1597 lines
56 KiB
C++
//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a DAG pattern matching instruction selector for X86,
|
|
// converting from a legalized dag to a X86 dag.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "x86-isel"
|
|
#include "X86.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86ISelLowering.h"
|
|
#include "X86MachineFunctionInfo.h"
|
|
#include "X86RegisterInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/GlobalValue.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Streams.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pattern Matcher Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
|
|
/// SDValue's instead of register numbers for the leaves of the matched
|
|
/// tree.
|
|
struct X86ISelAddressMode {
|
|
enum {
|
|
RegBase,
|
|
FrameIndexBase
|
|
} BaseType;
|
|
|
|
struct { // This is really a union, discriminated by BaseType!
|
|
SDValue Reg;
|
|
int FrameIndex;
|
|
} Base;
|
|
|
|
bool isRIPRel; // RIP as base?
|
|
unsigned Scale;
|
|
SDValue IndexReg;
|
|
int32_t Disp;
|
|
GlobalValue *GV;
|
|
Constant *CP;
|
|
const char *ES;
|
|
int JT;
|
|
unsigned Align; // CP alignment.
|
|
|
|
X86ISelAddressMode()
|
|
: BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
|
|
GV(0), CP(0), ES(0), JT(-1), Align(0) {
|
|
}
|
|
void dump() {
|
|
cerr << "X86ISelAddressMode " << this << "\n";
|
|
cerr << "Base.Reg ";
|
|
if (Base.Reg.getNode() != 0) Base.Reg.getNode()->dump();
|
|
else cerr << "nul";
|
|
cerr << " Base.FrameIndex " << Base.FrameIndex << "\n";
|
|
cerr << "isRIPRel " << isRIPRel << " Scale" << Scale << "\n";
|
|
cerr << "IndexReg ";
|
|
if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
|
|
else cerr << "nul";
|
|
cerr << " Disp " << Disp << "\n";
|
|
cerr << "GV "; if (GV) GV->dump();
|
|
else cerr << "nul";
|
|
cerr << " CP "; if (CP) CP->dump();
|
|
else cerr << "nul";
|
|
cerr << "\n";
|
|
cerr << "ES "; if (ES) cerr << ES; else cerr << "nul";
|
|
cerr << " JT" << JT << " Align" << Align << "\n";
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISel - X86 specific code to select X86 machine instructions for
|
|
/// SelectionDAG operations.
|
|
///
|
|
class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
|
|
/// TM - Keep a reference to X86TargetMachine.
|
|
///
|
|
X86TargetMachine &TM;
|
|
|
|
/// X86Lowering - This object fully describes how to lower LLVM code to an
|
|
/// X86-specific SelectionDAG.
|
|
X86TargetLowering &X86Lowering;
|
|
|
|
/// Subtarget - Keep a pointer to the X86Subtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const X86Subtarget *Subtarget;
|
|
|
|
/// CurBB - Current BB being isel'd.
|
|
///
|
|
MachineBasicBlock *CurBB;
|
|
|
|
/// OptForSize - If true, selector should try to optimize for code size
|
|
/// instead of performance.
|
|
bool OptForSize;
|
|
|
|
public:
|
|
X86DAGToDAGISel(X86TargetMachine &tm, bool fast)
|
|
: SelectionDAGISel(*tm.getTargetLowering(), fast),
|
|
TM(tm), X86Lowering(*TM.getTargetLowering()),
|
|
Subtarget(&TM.getSubtarget<X86Subtarget>()),
|
|
OptForSize(false) {}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "X86 DAG->DAG Instruction Selection";
|
|
}
|
|
|
|
/// InstructionSelect - This callback is invoked by
|
|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
|
|
virtual void InstructionSelect();
|
|
|
|
virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
|
|
|
|
virtual
|
|
bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const;
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "X86GenDAGISel.inc"
|
|
|
|
private:
|
|
SDNode *Select(SDValue N);
|
|
SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
|
|
|
|
bool MatchAddress(SDValue N, X86ISelAddressMode &AM,
|
|
bool isRoot = true, unsigned Depth = 0);
|
|
bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM,
|
|
bool isRoot, unsigned Depth);
|
|
bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index, SDValue &Disp);
|
|
bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index, SDValue &Disp);
|
|
bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
|
|
SDValue N, SDValue &Base, SDValue &Scale,
|
|
SDValue &Index, SDValue &Disp,
|
|
SDValue &InChain, SDValue &OutChain);
|
|
bool TryFoldLoad(SDValue P, SDValue N,
|
|
SDValue &Base, SDValue &Scale,
|
|
SDValue &Index, SDValue &Disp);
|
|
void PreprocessForRMW();
|
|
void PreprocessForFPConvert();
|
|
|
|
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
|
|
/// inline asm expressions.
|
|
virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
|
|
char ConstraintCode,
|
|
std::vector<SDValue> &OutOps);
|
|
|
|
void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
|
|
|
|
inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index,
|
|
SDValue &Disp) {
|
|
Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
|
|
CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
|
|
AM.Base.Reg;
|
|
Scale = getI8Imm(AM.Scale);
|
|
Index = AM.IndexReg;
|
|
// These are 32-bit even in 64-bit mode since RIP relative offset
|
|
// is 32-bit.
|
|
if (AM.GV)
|
|
Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
|
|
else if (AM.CP)
|
|
Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
|
|
AM.Align, AM.Disp);
|
|
else if (AM.ES)
|
|
Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
|
|
else if (AM.JT != -1)
|
|
Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
|
|
else
|
|
Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
|
|
}
|
|
|
|
/// getI8Imm - Return a target constant with the specified value, of type
|
|
/// i8.
|
|
inline SDValue getI8Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i8);
|
|
}
|
|
|
|
/// getI16Imm - Return a target constant with the specified value, of type
|
|
/// i16.
|
|
inline SDValue getI16Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i16);
|
|
}
|
|
|
|
/// getI32Imm - Return a target constant with the specified value, of type
|
|
/// i32.
|
|
inline SDValue getI32Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i32);
|
|
}
|
|
|
|
/// getGlobalBaseReg - Return an SDNode that returns the value of
|
|
/// the global base register. Output instructions required to
|
|
/// initialize the global base register, if necessary.
|
|
///
|
|
SDNode *getGlobalBaseReg();
|
|
|
|
/// getTruncateTo8Bit - return an SDNode that implements a subreg based
|
|
/// truncate of the specified operand to i8. This can be done with tablegen,
|
|
/// except that this code uses MVT::Flag in a tricky way that happens to
|
|
/// improve scheduling in some cases.
|
|
SDNode *getTruncateTo8Bit(SDValue N0);
|
|
|
|
#ifndef NDEBUG
|
|
unsigned Indent;
|
|
#endif
|
|
};
|
|
}
|
|
|
|
/// findFlagUse - Return use of MVT::Flag value produced by the specified
|
|
/// SDNode.
|
|
///
|
|
static SDNode *findFlagUse(SDNode *N) {
|
|
unsigned FlagResNo = N->getNumValues()-1;
|
|
for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
|
|
SDNode *User = *I;
|
|
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
|
|
SDValue Op = User->getOperand(i);
|
|
if (Op.getNode() == N && Op.getResNo() == FlagResNo)
|
|
return User;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/// findNonImmUse - Return true by reference in "found" if "Use" is an
|
|
/// non-immediate use of "Def". This function recursively traversing
|
|
/// up the operand chain ignoring certain nodes.
|
|
static void findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
|
|
SDNode *Root, bool &found,
|
|
SmallPtrSet<SDNode*, 16> &Visited) {
|
|
if (found ||
|
|
Use->getNodeId() < Def->getNodeId() ||
|
|
!Visited.insert(Use))
|
|
return;
|
|
|
|
for (unsigned i = 0, e = Use->getNumOperands(); !found && i != e; ++i) {
|
|
SDNode *N = Use->getOperand(i).getNode();
|
|
if (N == Def) {
|
|
if (Use == ImmedUse || Use == Root)
|
|
continue; // We are not looking for immediate use.
|
|
assert(N != Root);
|
|
found = true;
|
|
break;
|
|
}
|
|
|
|
// Traverse up the operand chain.
|
|
findNonImmUse(N, Def, ImmedUse, Root, found, Visited);
|
|
}
|
|
}
|
|
|
|
/// isNonImmUse - Start searching from Root up the DAG to check is Def can
|
|
/// be reached. Return true if that's the case. However, ignore direct uses
|
|
/// by ImmedUse (which would be U in the example illustrated in
|
|
/// IsLegalAndProfitableToFold) and by Root (which can happen in the store
|
|
/// case).
|
|
/// FIXME: to be really generic, we should allow direct use by any node
|
|
/// that is being folded. But realisticly since we only fold loads which
|
|
/// have one non-chain use, we only need to watch out for load/op/store
|
|
/// and load/op/cmp case where the root (store / cmp) may reach the load via
|
|
/// its chain operand.
|
|
static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
|
|
SmallPtrSet<SDNode*, 16> Visited;
|
|
bool found = false;
|
|
findNonImmUse(Root, Def, ImmedUse, Root, found, Visited);
|
|
return found;
|
|
}
|
|
|
|
|
|
bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
|
|
SDNode *Root) const {
|
|
if (Fast) return false;
|
|
|
|
if (U == Root)
|
|
switch (U->getOpcode()) {
|
|
default: break;
|
|
case ISD::ADD:
|
|
case ISD::ADDC:
|
|
case ISD::ADDE:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR: {
|
|
// If the other operand is a 8-bit immediate we should fold the immediate
|
|
// instead. This reduces code size.
|
|
// e.g.
|
|
// movl 4(%esp), %eax
|
|
// addl $4, %eax
|
|
// vs.
|
|
// movl $4, %eax
|
|
// addl 4(%esp), %eax
|
|
// The former is 2 bytes shorter. In case where the increment is 1, then
|
|
// the saving can be 4 bytes (by using incl %eax).
|
|
ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(U->getOperand(1));
|
|
if (Imm) {
|
|
if (U->getValueType(0) == MVT::i64) {
|
|
if ((int32_t)Imm->getZExtValue() == (int64_t)Imm->getZExtValue())
|
|
return false;
|
|
} else {
|
|
if ((int8_t)Imm->getZExtValue() == (int64_t)Imm->getZExtValue())
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If Root use can somehow reach N through a path that that doesn't contain
|
|
// U then folding N would create a cycle. e.g. In the following
|
|
// diagram, Root can reach N through X. If N is folded into into Root, then
|
|
// X is both a predecessor and a successor of U.
|
|
//
|
|
// [N*] //
|
|
// ^ ^ //
|
|
// / \ //
|
|
// [U*] [X]? //
|
|
// ^ ^ //
|
|
// \ / //
|
|
// \ / //
|
|
// [Root*] //
|
|
//
|
|
// * indicates nodes to be folded together.
|
|
//
|
|
// If Root produces a flag, then it gets (even more) interesting. Since it
|
|
// will be "glued" together with its flag use in the scheduler, we need to
|
|
// check if it might reach N.
|
|
//
|
|
// [N*] //
|
|
// ^ ^ //
|
|
// / \ //
|
|
// [U*] [X]? //
|
|
// ^ ^ //
|
|
// \ \ //
|
|
// \ | //
|
|
// [Root*] | //
|
|
// ^ | //
|
|
// f | //
|
|
// | / //
|
|
// [Y] / //
|
|
// ^ / //
|
|
// f / //
|
|
// | / //
|
|
// [FU] //
|
|
//
|
|
// If FU (flag use) indirectly reaches N (the load), and Root folds N
|
|
// (call it Fold), then X is a predecessor of FU and a successor of
|
|
// Fold. But since Fold and FU are flagged together, this will create
|
|
// a cycle in the scheduling graph.
|
|
|
|
MVT VT = Root->getValueType(Root->getNumValues()-1);
|
|
while (VT == MVT::Flag) {
|
|
SDNode *FU = findFlagUse(Root);
|
|
if (FU == NULL)
|
|
break;
|
|
Root = FU;
|
|
VT = Root->getValueType(Root->getNumValues()-1);
|
|
}
|
|
|
|
return !isNonImmUse(Root, N, U);
|
|
}
|
|
|
|
/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
|
|
/// and move load below the TokenFactor. Replace store's chain operand with
|
|
/// load's chain result.
|
|
static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
|
|
SDValue Store, SDValue TF) {
|
|
SmallVector<SDValue, 4> Ops;
|
|
for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
|
|
if (Load.getNode() == TF.getOperand(i).getNode())
|
|
Ops.push_back(Load.getOperand(0));
|
|
else
|
|
Ops.push_back(TF.getOperand(i));
|
|
CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
|
|
CurDAG->UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
|
|
CurDAG->UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
|
|
Store.getOperand(2), Store.getOperand(3));
|
|
}
|
|
|
|
/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.
|
|
///
|
|
static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
|
|
SDValue &Load) {
|
|
if (N.getOpcode() == ISD::BIT_CONVERT)
|
|
N = N.getOperand(0);
|
|
|
|
LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
|
|
if (!LD || LD->isVolatile())
|
|
return false;
|
|
if (LD->getAddressingMode() != ISD::UNINDEXED)
|
|
return false;
|
|
|
|
ISD::LoadExtType ExtType = LD->getExtensionType();
|
|
if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
|
|
return false;
|
|
|
|
if (N.hasOneUse() &&
|
|
N.getOperand(1) == Address &&
|
|
N.getNode()->isOperandOf(Chain.getNode())) {
|
|
Load = N;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
|
|
/// operand and move load below the call's chain operand.
|
|
static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
|
|
SDValue Call, SDValue Chain) {
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0, e = Chain.getNode()->getNumOperands(); i != e; ++i)
|
|
if (Load.getNode() == Chain.getOperand(i).getNode())
|
|
Ops.push_back(Load.getOperand(0));
|
|
else
|
|
Ops.push_back(Chain.getOperand(i));
|
|
CurDAG->UpdateNodeOperands(Chain, &Ops[0], Ops.size());
|
|
CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
|
|
Load.getOperand(1), Load.getOperand(2));
|
|
Ops.clear();
|
|
Ops.push_back(SDValue(Load.getNode(), 1));
|
|
for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
|
|
Ops.push_back(Call.getOperand(i));
|
|
CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
|
|
}
|
|
|
|
/// isCalleeLoad - Return true if call address is a load and it can be
|
|
/// moved below CALLSEQ_START and the chains leading up to the call.
|
|
/// Return the CALLSEQ_START by reference as a second output.
|
|
static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
|
|
if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
|
|
return false;
|
|
LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
|
|
if (!LD ||
|
|
LD->isVolatile() ||
|
|
LD->getAddressingMode() != ISD::UNINDEXED ||
|
|
LD->getExtensionType() != ISD::NON_EXTLOAD)
|
|
return false;
|
|
|
|
// Now let's find the callseq_start.
|
|
while (Chain.getOpcode() != ISD::CALLSEQ_START) {
|
|
if (!Chain.hasOneUse())
|
|
return false;
|
|
Chain = Chain.getOperand(0);
|
|
}
|
|
return Chain.getOperand(0).getNode() == Callee.getNode();
|
|
}
|
|
|
|
|
|
/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
|
|
/// This is only run if not in -fast mode (aka -O0).
|
|
/// This allows the instruction selector to pick more read-modify-write
|
|
/// instructions. This is a common case:
|
|
///
|
|
/// [Load chain]
|
|
/// ^
|
|
/// |
|
|
/// [Load]
|
|
/// ^ ^
|
|
/// | |
|
|
/// / \-
|
|
/// / |
|
|
/// [TokenFactor] [Op]
|
|
/// ^ ^
|
|
/// | |
|
|
/// \ /
|
|
/// \ /
|
|
/// [Store]
|
|
///
|
|
/// The fact the store's chain operand != load's chain will prevent the
|
|
/// (store (op (load))) instruction from being selected. We can transform it to:
|
|
///
|
|
/// [Load chain]
|
|
/// ^
|
|
/// |
|
|
/// [TokenFactor]
|
|
/// ^
|
|
/// |
|
|
/// [Load]
|
|
/// ^ ^
|
|
/// | |
|
|
/// | \-
|
|
/// | |
|
|
/// | [Op]
|
|
/// | ^
|
|
/// | |
|
|
/// \ /
|
|
/// \ /
|
|
/// [Store]
|
|
void X86DAGToDAGISel::PreprocessForRMW() {
|
|
for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
|
|
E = CurDAG->allnodes_end(); I != E; ++I) {
|
|
if (I->getOpcode() == X86ISD::CALL) {
|
|
/// Also try moving call address load from outside callseq_start to just
|
|
/// before the call to allow it to be folded.
|
|
///
|
|
/// [Load chain]
|
|
/// ^
|
|
/// |
|
|
/// [Load]
|
|
/// ^ ^
|
|
/// | |
|
|
/// / \--
|
|
/// / |
|
|
///[CALLSEQ_START] |
|
|
/// ^ |
|
|
/// | |
|
|
/// [LOAD/C2Reg] |
|
|
/// | |
|
|
/// \ /
|
|
/// \ /
|
|
/// [CALL]
|
|
SDValue Chain = I->getOperand(0);
|
|
SDValue Load = I->getOperand(1);
|
|
if (!isCalleeLoad(Load, Chain))
|
|
continue;
|
|
MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
|
|
++NumLoadMoved;
|
|
continue;
|
|
}
|
|
|
|
if (!ISD::isNON_TRUNCStore(I))
|
|
continue;
|
|
SDValue Chain = I->getOperand(0);
|
|
|
|
if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
|
|
continue;
|
|
|
|
SDValue N1 = I->getOperand(1);
|
|
SDValue N2 = I->getOperand(2);
|
|
if ((N1.getValueType().isFloatingPoint() &&
|
|
!N1.getValueType().isVector()) ||
|
|
!N1.hasOneUse())
|
|
continue;
|
|
|
|
bool RModW = false;
|
|
SDValue Load;
|
|
unsigned Opcode = N1.getNode()->getOpcode();
|
|
switch (Opcode) {
|
|
case ISD::ADD:
|
|
case ISD::MUL:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::ADDC:
|
|
case ISD::ADDE:
|
|
case ISD::VECTOR_SHUFFLE: {
|
|
SDValue N10 = N1.getOperand(0);
|
|
SDValue N11 = N1.getOperand(1);
|
|
RModW = isRMWLoad(N10, Chain, N2, Load);
|
|
if (!RModW)
|
|
RModW = isRMWLoad(N11, Chain, N2, Load);
|
|
break;
|
|
}
|
|
case ISD::SUB:
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
case ISD::SUBC:
|
|
case ISD::SUBE:
|
|
case X86ISD::SHLD:
|
|
case X86ISD::SHRD: {
|
|
SDValue N10 = N1.getOperand(0);
|
|
RModW = isRMWLoad(N10, Chain, N2, Load);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (RModW) {
|
|
MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
|
|
++NumLoadMoved;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
|
|
/// nodes that target the FP stack to be store and load to the stack. This is a
|
|
/// gross hack. We would like to simply mark these as being illegal, but when
|
|
/// we do that, legalize produces these when it expands calls, then expands
|
|
/// these in the same legalize pass. We would like dag combine to be able to
|
|
/// hack on these between the call expansion and the node legalization. As such
|
|
/// this pass basically does "really late" legalization of these inline with the
|
|
/// X86 isel pass.
|
|
void X86DAGToDAGISel::PreprocessForFPConvert() {
|
|
for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
|
|
E = CurDAG->allnodes_end(); I != E; ) {
|
|
SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
|
|
if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
|
|
continue;
|
|
|
|
// If the source and destination are SSE registers, then this is a legal
|
|
// conversion that should not be lowered.
|
|
MVT SrcVT = N->getOperand(0).getValueType();
|
|
MVT DstVT = N->getValueType(0);
|
|
bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
|
|
bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
|
|
if (SrcIsSSE && DstIsSSE)
|
|
continue;
|
|
|
|
if (!SrcIsSSE && !DstIsSSE) {
|
|
// If this is an FPStack extension, it is a noop.
|
|
if (N->getOpcode() == ISD::FP_EXTEND)
|
|
continue;
|
|
// If this is a value-preserving FPStack truncation, it is a noop.
|
|
if (N->getConstantOperandVal(1))
|
|
continue;
|
|
}
|
|
|
|
// Here we could have an FP stack truncation or an FPStack <-> SSE convert.
|
|
// FPStack has extload and truncstore. SSE can fold direct loads into other
|
|
// operations. Based on this, decide what we want to do.
|
|
MVT MemVT;
|
|
if (N->getOpcode() == ISD::FP_ROUND)
|
|
MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
|
|
else
|
|
MemVT = SrcIsSSE ? SrcVT : DstVT;
|
|
|
|
SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
|
|
|
|
// FIXME: optimize the case where the src/dest is a load or store?
|
|
SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(),
|
|
N->getOperand(0),
|
|
MemTmp, NULL, 0, MemVT);
|
|
SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, DstVT, Store, MemTmp,
|
|
NULL, 0, MemVT);
|
|
|
|
// We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
|
|
// extload we created. This will cause general havok on the dag because
|
|
// anything below the conversion could be folded into other existing nodes.
|
|
// To avoid invalidating 'I', back it up to the convert node.
|
|
--I;
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
|
|
|
|
// Now that we did that, the node is dead. Increment the iterator to the
|
|
// next node to process, then delete N.
|
|
++I;
|
|
CurDAG->DeleteNode(N);
|
|
}
|
|
}
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
|
|
/// when it has created a SelectionDAG for us to codegen.
|
|
void X86DAGToDAGISel::InstructionSelect() {
|
|
CurBB = BB; // BB can change as result of isel.
|
|
const Function *F = CurDAG->getMachineFunction().getFunction();
|
|
OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
|
|
|
|
DEBUG(BB->dump());
|
|
if (!Fast)
|
|
PreprocessForRMW();
|
|
|
|
// FIXME: This should only happen when not -fast.
|
|
PreprocessForFPConvert();
|
|
|
|
// Codegen the basic block.
|
|
#ifndef NDEBUG
|
|
DOUT << "===== Instruction selection begins:\n";
|
|
Indent = 0;
|
|
#endif
|
|
SelectRoot(*CurDAG);
|
|
#ifndef NDEBUG
|
|
DOUT << "===== Instruction selection ends:\n";
|
|
#endif
|
|
|
|
CurDAG->RemoveDeadNodes();
|
|
}
|
|
|
|
/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
|
|
/// the main function.
|
|
void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
|
|
MachineFrameInfo *MFI) {
|
|
const TargetInstrInfo *TII = TM.getInstrInfo();
|
|
if (Subtarget->isTargetCygMing())
|
|
BuildMI(BB, TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
|
|
}
|
|
|
|
void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
|
|
// If this is main, emit special code for main.
|
|
MachineBasicBlock *BB = MF.begin();
|
|
if (Fn.hasExternalLinkage() && Fn.getName() == "main")
|
|
EmitSpecialCodeForMain(BB, MF.getFrameInfo());
|
|
}
|
|
|
|
/// MatchAddress - Add the specified node to the specified addressing mode,
|
|
/// returning true if it cannot be done. This just pattern matches for the
|
|
/// addressing mode.
|
|
bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
|
|
bool isRoot, unsigned Depth) {
|
|
bool is64Bit = Subtarget->is64Bit();
|
|
DOUT << "MatchAddress: "; DEBUG(AM.dump());
|
|
// Limit recursion.
|
|
if (Depth > 5)
|
|
return MatchAddressBase(N, AM, isRoot, Depth);
|
|
|
|
// RIP relative addressing: %rip + 32-bit displacement!
|
|
if (AM.isRIPRel) {
|
|
if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
|
|
uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
|
|
if (!is64Bit || isInt32(AM.Disp + Val)) {
|
|
AM.Disp += Val;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
switch (N.getOpcode()) {
|
|
default: break;
|
|
case ISD::Constant: {
|
|
uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
|
|
if (!is64Bit || isInt32(AM.Disp + Val)) {
|
|
AM.Disp += Val;
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case X86ISD::Wrapper: {
|
|
DOUT << "Wrapper: 64bit " << is64Bit;
|
|
DOUT << " AM "; DEBUG(AM.dump()); DOUT << "\n";
|
|
// Under X86-64 non-small code model, GV (and friends) are 64-bits.
|
|
// Also, base and index reg must be 0 in order to use rip as base.
|
|
if (is64Bit && (TM.getCodeModel() != CodeModel::Small ||
|
|
AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
|
|
break;
|
|
if (AM.GV != 0 || AM.CP != 0 || AM.ES != 0 || AM.JT != -1)
|
|
break;
|
|
// If value is available in a register both base and index components have
|
|
// been picked, we can't fit the result available in the register in the
|
|
// addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
|
|
{
|
|
SDValue N0 = N.getOperand(0);
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
|
|
uint64_t Offset = G->getOffset();
|
|
if (!is64Bit || isInt32(AM.Disp + Offset)) {
|
|
GlobalValue *GV = G->getGlobal();
|
|
AM.GV = GV;
|
|
AM.Disp += Offset;
|
|
AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
|
|
return false;
|
|
}
|
|
} else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
|
|
uint64_t Offset = CP->getOffset();
|
|
if (!is64Bit || isInt32(AM.Disp + Offset)) {
|
|
AM.CP = CP->getConstVal();
|
|
AM.Align = CP->getAlignment();
|
|
AM.Disp += Offset;
|
|
AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
|
|
return false;
|
|
}
|
|
} else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
|
|
AM.ES = S->getSymbol();
|
|
AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
|
|
return false;
|
|
} else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
|
|
AM.JT = J->getIndex();
|
|
AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::FrameIndex:
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase
|
|
&& AM.Base.Reg.getNode() == 0) {
|
|
AM.BaseType = X86ISelAddressMode::FrameIndexBase;
|
|
AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case ISD::SHL:
|
|
if (AM.IndexReg.getNode() != 0 || AM.Scale != 1 || AM.isRIPRel)
|
|
break;
|
|
|
|
if (ConstantSDNode
|
|
*CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
|
|
unsigned Val = CN->getZExtValue();
|
|
if (Val == 1 || Val == 2 || Val == 3) {
|
|
AM.Scale = 1 << Val;
|
|
SDValue ShVal = N.getNode()->getOperand(0);
|
|
|
|
// Okay, we know that we have a scale by now. However, if the scaled
|
|
// value is an add of something and a constant, we can fold the
|
|
// constant into the disp field here.
|
|
if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
|
|
isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
|
|
AM.IndexReg = ShVal.getNode()->getOperand(0);
|
|
ConstantSDNode *AddVal =
|
|
cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
|
|
uint64_t Disp = AM.Disp + (AddVal->getZExtValue() << Val);
|
|
if (!is64Bit || isInt32(Disp))
|
|
AM.Disp = Disp;
|
|
else
|
|
AM.IndexReg = ShVal;
|
|
} else {
|
|
AM.IndexReg = ShVal;
|
|
}
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::SMUL_LOHI:
|
|
case ISD::UMUL_LOHI:
|
|
// A mul_lohi where we need the low part can be folded as a plain multiply.
|
|
if (N.getResNo() != 0) break;
|
|
// FALL THROUGH
|
|
case ISD::MUL:
|
|
// X*[3,5,9] -> X+X*[2,4,8]
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase &&
|
|
AM.Base.Reg.getNode() == 0 &&
|
|
AM.IndexReg.getNode() == 0 &&
|
|
!AM.isRIPRel) {
|
|
if (ConstantSDNode
|
|
*CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
|
|
if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
|
|
CN->getZExtValue() == 9) {
|
|
AM.Scale = unsigned(CN->getZExtValue())-1;
|
|
|
|
SDValue MulVal = N.getNode()->getOperand(0);
|
|
SDValue Reg;
|
|
|
|
// Okay, we know that we have a scale by now. However, if the scaled
|
|
// value is an add of something and a constant, we can fold the
|
|
// constant into the disp field here.
|
|
if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
|
|
isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
|
|
Reg = MulVal.getNode()->getOperand(0);
|
|
ConstantSDNode *AddVal =
|
|
cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
|
|
uint64_t Disp = AM.Disp + AddVal->getZExtValue() *
|
|
CN->getZExtValue();
|
|
if (!is64Bit || isInt32(Disp))
|
|
AM.Disp = Disp;
|
|
else
|
|
Reg = N.getNode()->getOperand(0);
|
|
} else {
|
|
Reg = N.getNode()->getOperand(0);
|
|
}
|
|
|
|
AM.IndexReg = AM.Base.Reg = Reg;
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ISD::ADD:
|
|
{
|
|
X86ISelAddressMode Backup = AM;
|
|
if (!MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1) &&
|
|
!MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1))
|
|
return false;
|
|
AM = Backup;
|
|
if (!MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1) &&
|
|
!MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1))
|
|
return false;
|
|
AM = Backup;
|
|
}
|
|
break;
|
|
|
|
case ISD::OR:
|
|
// Handle "X | C" as "X + C" iff X is known to have C bits clear.
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
X86ISelAddressMode Backup = AM;
|
|
uint64_t Offset = CN->getSExtValue();
|
|
// Start with the LHS as an addr mode.
|
|
if (!MatchAddress(N.getOperand(0), AM, false) &&
|
|
// Address could not have picked a GV address for the displacement.
|
|
AM.GV == NULL &&
|
|
// On x86-64, the resultant disp must fit in 32-bits.
|
|
(!is64Bit || isInt32(AM.Disp + Offset)) &&
|
|
// Check to see if the LHS & C is zero.
|
|
CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
|
|
AM.Disp += Offset;
|
|
return false;
|
|
}
|
|
AM = Backup;
|
|
}
|
|
break;
|
|
|
|
case ISD::AND: {
|
|
// Handle "(x << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
|
|
// allows us to fold the shift into this addressing mode.
|
|
SDValue Shift = N.getOperand(0);
|
|
if (Shift.getOpcode() != ISD::SHL) break;
|
|
|
|
// Scale must not be used already.
|
|
if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
|
|
|
|
// Not when RIP is used as the base.
|
|
if (AM.isRIPRel) break;
|
|
|
|
ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
|
|
if (!C1 || !C2) break;
|
|
|
|
// Not likely to be profitable if either the AND or SHIFT node has more
|
|
// than one use (unless all uses are for address computation). Besides,
|
|
// isel mechanism requires their node ids to be reused.
|
|
if (!N.hasOneUse() || !Shift.hasOneUse())
|
|
break;
|
|
|
|
// Verify that the shift amount is something we can fold.
|
|
unsigned ShiftCst = C1->getZExtValue();
|
|
if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
|
|
break;
|
|
|
|
// Get the new AND mask, this folds to a constant.
|
|
SDValue X = Shift.getOperand(0);
|
|
SDValue NewANDMask = CurDAG->getNode(ISD::SRL, N.getValueType(),
|
|
SDValue(C2, 0), SDValue(C1, 0));
|
|
SDValue NewAND = CurDAG->getNode(ISD::AND, N.getValueType(), X, NewANDMask);
|
|
SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, N.getValueType(),
|
|
NewAND, SDValue(C1, 0));
|
|
|
|
// Insert the new nodes into the topological ordering.
|
|
if (C1->getNodeId() > X.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(X.getNode(), C1);
|
|
C1->setNodeId(X.getNode()->getNodeId());
|
|
}
|
|
if (NewANDMask.getNode()->getNodeId() == -1 ||
|
|
NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
|
|
NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
|
|
}
|
|
if (NewAND.getNode()->getNodeId() == -1 ||
|
|
NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
|
|
NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
|
|
}
|
|
if (NewSHIFT.getNode()->getNodeId() == -1 ||
|
|
NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
|
|
NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
|
|
}
|
|
|
|
CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
|
|
|
|
AM.Scale = 1 << ShiftCst;
|
|
AM.IndexReg = NewAND;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return MatchAddressBase(N, AM, isRoot, Depth);
|
|
}
|
|
|
|
/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
|
|
/// specified addressing mode without any further recursion.
|
|
bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM,
|
|
bool isRoot, unsigned Depth) {
|
|
// Is the base register already occupied?
|
|
if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
|
|
// If so, check to see if the scale index register is set.
|
|
if (AM.IndexReg.getNode() == 0 && !AM.isRIPRel) {
|
|
AM.IndexReg = N;
|
|
AM.Scale = 1;
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we cannot select it.
|
|
return true;
|
|
}
|
|
|
|
// Default, generate it as a register.
|
|
AM.BaseType = X86ISelAddressMode::RegBase;
|
|
AM.Base.Reg = N;
|
|
return false;
|
|
}
|
|
|
|
/// SelectAddr - returns true if it is able pattern match an addressing mode.
|
|
/// It returns the operands which make up the maximal addressing mode it can
|
|
/// match by reference.
|
|
bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index,
|
|
SDValue &Disp) {
|
|
X86ISelAddressMode AM;
|
|
if (MatchAddress(N, AM))
|
|
return false;
|
|
|
|
MVT VT = N.getValueType();
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase) {
|
|
if (!AM.Base.Reg.getNode())
|
|
AM.Base.Reg = CurDAG->getRegister(0, VT);
|
|
}
|
|
|
|
if (!AM.IndexReg.getNode())
|
|
AM.IndexReg = CurDAG->getRegister(0, VT);
|
|
|
|
getAddressOperands(AM, Base, Scale, Index, Disp);
|
|
return true;
|
|
}
|
|
|
|
/// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
|
|
/// match a load whose top elements are either undef or zeros. The load flavor
|
|
/// is derived from the type of N, which is either v4f32 or v2f64.
|
|
bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
|
|
SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index,
|
|
SDValue &Disp, SDValue &InChain,
|
|
SDValue &OutChain) {
|
|
if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
|
|
InChain = N.getOperand(0).getValue(1);
|
|
if (ISD::isNON_EXTLoad(InChain.getNode()) &&
|
|
InChain.getValue(0).hasOneUse() &&
|
|
N.hasOneUse() &&
|
|
IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(InChain);
|
|
if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
|
|
return false;
|
|
OutChain = LD->getChain();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Also handle the case where we explicitly require zeros in the top
|
|
// elements. This is a vector shuffle from the zero vector.
|
|
if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
|
|
// Check to see if the top elements are all zeros (or bitcast of zeros).
|
|
N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
|
|
N.getOperand(0).getNode()->hasOneUse() &&
|
|
ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
|
|
N.getOperand(0).getOperand(0).hasOneUse()) {
|
|
// Okay, this is a zero extending load. Fold it.
|
|
LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
|
|
if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
|
|
return false;
|
|
OutChain = LD->getChain();
|
|
InChain = SDValue(LD, 1);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
|
|
/// mode it matches can be cost effectively emitted as an LEA instruction.
|
|
bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
|
|
SDValue &Base, SDValue &Scale,
|
|
SDValue &Index, SDValue &Disp) {
|
|
X86ISelAddressMode AM;
|
|
if (MatchAddress(N, AM))
|
|
return false;
|
|
|
|
MVT VT = N.getValueType();
|
|
unsigned Complexity = 0;
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase)
|
|
if (AM.Base.Reg.getNode())
|
|
Complexity = 1;
|
|
else
|
|
AM.Base.Reg = CurDAG->getRegister(0, VT);
|
|
else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
|
|
Complexity = 4;
|
|
|
|
if (AM.IndexReg.getNode())
|
|
Complexity++;
|
|
else
|
|
AM.IndexReg = CurDAG->getRegister(0, VT);
|
|
|
|
// Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
|
|
// a simple shift.
|
|
if (AM.Scale > 1)
|
|
Complexity++;
|
|
|
|
// FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
|
|
// to a LEA. This is determined with some expermentation but is by no means
|
|
// optimal (especially for code size consideration). LEA is nice because of
|
|
// its three-address nature. Tweak the cost function again when we can run
|
|
// convertToThreeAddress() at register allocation time.
|
|
if (AM.GV || AM.CP || AM.ES || AM.JT != -1) {
|
|
// For X86-64, we should always use lea to materialize RIP relative
|
|
// addresses.
|
|
if (Subtarget->is64Bit())
|
|
Complexity = 4;
|
|
else
|
|
Complexity += 2;
|
|
}
|
|
|
|
if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
|
|
Complexity++;
|
|
|
|
if (Complexity > 2) {
|
|
getAddressOperands(AM, Base, Scale, Index, Disp);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
|
|
SDValue &Base, SDValue &Scale,
|
|
SDValue &Index, SDValue &Disp) {
|
|
if (ISD::isNON_EXTLoad(N.getNode()) &&
|
|
N.hasOneUse() &&
|
|
IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
|
|
return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp);
|
|
return false;
|
|
}
|
|
|
|
/// getGlobalBaseReg - Return an SDNode that returns the value of
|
|
/// the global base register. Output instructions required to
|
|
/// initialize the global base register, if necessary.
|
|
///
|
|
SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
|
|
MachineFunction *MF = CurBB->getParent();
|
|
unsigned GlobalBaseReg = TM.getInstrInfo()->getGlobalBaseReg(MF);
|
|
return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
|
|
}
|
|
|
|
static SDNode *FindCallStartFromCall(SDNode *Node) {
|
|
if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
|
|
assert(Node->getOperand(0).getValueType() == MVT::Other &&
|
|
"Node doesn't have a token chain argument!");
|
|
return FindCallStartFromCall(Node->getOperand(0).getNode());
|
|
}
|
|
|
|
/// getTruncateTo8Bit - return an SDNode that implements a subreg based
|
|
/// truncate of the specified operand to i8. This can be done with tablegen,
|
|
/// except that this code uses MVT::Flag in a tricky way that happens to
|
|
/// improve scheduling in some cases.
|
|
SDNode *X86DAGToDAGISel::getTruncateTo8Bit(SDValue N0) {
|
|
assert(!Subtarget->is64Bit() &&
|
|
"getTruncateTo8Bit is only needed on x86-32!");
|
|
SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
|
|
|
|
// Ensure that the source register has an 8-bit subreg on 32-bit targets
|
|
unsigned Opc;
|
|
MVT N0VT = N0.getValueType();
|
|
switch (N0VT.getSimpleVT()) {
|
|
default: assert(0 && "Unknown truncate!");
|
|
case MVT::i16:
|
|
Opc = X86::MOV16to16_;
|
|
break;
|
|
case MVT::i32:
|
|
Opc = X86::MOV32to32_;
|
|
break;
|
|
}
|
|
|
|
// The use of MVT::Flag here is not strictly accurate, but it helps
|
|
// scheduling in some cases.
|
|
N0 = SDValue(CurDAG->getTargetNode(Opc, N0VT, MVT::Flag, N0), 0);
|
|
return CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
|
|
MVT::i8, N0, SRIdx, N0.getValue(1));
|
|
}
|
|
|
|
SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
|
|
SDValue Chain = Node->getOperand(0);
|
|
SDValue In1 = Node->getOperand(1);
|
|
SDValue In2L = Node->getOperand(2);
|
|
SDValue In2H = Node->getOperand(3);
|
|
SDValue Tmp0, Tmp1, Tmp2, Tmp3;
|
|
if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3))
|
|
return NULL;
|
|
SDValue LSI = Node->getOperand(4); // MemOperand
|
|
const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, In2L, In2H, LSI, Chain };
|
|
return CurDAG->getTargetNode(Opc, MVT::i32, MVT::i32, MVT::Other, Ops, 8);
|
|
}
|
|
|
|
SDNode *X86DAGToDAGISel::Select(SDValue N) {
|
|
SDNode *Node = N.getNode();
|
|
MVT NVT = Node->getValueType(0);
|
|
unsigned Opc, MOpc;
|
|
unsigned Opcode = Node->getOpcode();
|
|
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent, ' ') << "Selecting: ";
|
|
DEBUG(Node->dump(CurDAG));
|
|
DOUT << "\n";
|
|
Indent += 2;
|
|
#endif
|
|
|
|
if (Node->isMachineOpcode()) {
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent-2, ' ') << "== ";
|
|
DEBUG(Node->dump(CurDAG));
|
|
DOUT << "\n";
|
|
Indent -= 2;
|
|
#endif
|
|
return NULL; // Already selected.
|
|
}
|
|
|
|
switch (Opcode) {
|
|
default: break;
|
|
case X86ISD::GlobalBaseReg:
|
|
return getGlobalBaseReg();
|
|
|
|
case X86ISD::ATOMOR64_DAG:
|
|
return SelectAtomic64(Node, X86::ATOMOR6432);
|
|
case X86ISD::ATOMXOR64_DAG:
|
|
return SelectAtomic64(Node, X86::ATOMXOR6432);
|
|
case X86ISD::ATOMADD64_DAG:
|
|
return SelectAtomic64(Node, X86::ATOMADD6432);
|
|
case X86ISD::ATOMSUB64_DAG:
|
|
return SelectAtomic64(Node, X86::ATOMSUB6432);
|
|
case X86ISD::ATOMNAND64_DAG:
|
|
return SelectAtomic64(Node, X86::ATOMNAND6432);
|
|
case X86ISD::ATOMAND64_DAG:
|
|
return SelectAtomic64(Node, X86::ATOMAND6432);
|
|
case X86ISD::ATOMSWAP64_DAG:
|
|
return SelectAtomic64(Node, X86::ATOMSWAP6432);
|
|
|
|
case ISD::SMUL_LOHI:
|
|
case ISD::UMUL_LOHI: {
|
|
SDValue N0 = Node->getOperand(0);
|
|
SDValue N1 = Node->getOperand(1);
|
|
|
|
bool isSigned = Opcode == ISD::SMUL_LOHI;
|
|
if (!isSigned)
|
|
switch (NVT.getSimpleVT()) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
|
|
case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
|
|
case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
|
|
case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
|
|
}
|
|
else
|
|
switch (NVT.getSimpleVT()) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
|
|
case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
|
|
case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
|
|
case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
|
|
}
|
|
|
|
unsigned LoReg, HiReg;
|
|
switch (NVT.getSimpleVT()) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break;
|
|
case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break;
|
|
case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
|
|
case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
|
|
}
|
|
|
|
SDValue Tmp0, Tmp1, Tmp2, Tmp3;
|
|
bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
|
|
// multiplty is commmutative
|
|
if (!foldedLoad) {
|
|
foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3);
|
|
if (foldedLoad)
|
|
std::swap(N0, N1);
|
|
}
|
|
|
|
SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), LoReg,
|
|
N0, SDValue()).getValue(1);
|
|
|
|
if (foldedLoad) {
|
|
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
|
|
SDNode *CNode =
|
|
CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
|
|
InFlag = SDValue(CNode, 1);
|
|
// Update the chain.
|
|
ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
|
|
} else {
|
|
InFlag =
|
|
SDValue(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
|
|
}
|
|
|
|
// Copy the low half of the result, if it is needed.
|
|
if (!N.getValue(0).use_empty()) {
|
|
SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
|
|
LoReg, NVT, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
ReplaceUses(N.getValue(0), Result);
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent-2, ' ') << "=> ";
|
|
DEBUG(Result.getNode()->dump(CurDAG));
|
|
DOUT << "\n";
|
|
#endif
|
|
}
|
|
// Copy the high half of the result, if it is needed.
|
|
if (!N.getValue(1).use_empty()) {
|
|
SDValue Result;
|
|
if (HiReg == X86::AH && Subtarget->is64Bit()) {
|
|
// Prevent use of AH in a REX instruction by referencing AX instead.
|
|
// Shift it down 8 bits.
|
|
Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
|
|
X86::AX, MVT::i16, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, MVT::i16, Result,
|
|
CurDAG->getTargetConstant(8, MVT::i8)), 0);
|
|
// Then truncate it down to i8.
|
|
SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
|
|
Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
|
|
MVT::i8, Result, SRIdx), 0);
|
|
} else {
|
|
Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
|
|
HiReg, NVT, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
}
|
|
ReplaceUses(N.getValue(1), Result);
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent-2, ' ') << "=> ";
|
|
DEBUG(Result.getNode()->dump(CurDAG));
|
|
DOUT << "\n";
|
|
#endif
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
Indent -= 2;
|
|
#endif
|
|
|
|
return NULL;
|
|
}
|
|
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM: {
|
|
SDValue N0 = Node->getOperand(0);
|
|
SDValue N1 = Node->getOperand(1);
|
|
|
|
bool isSigned = Opcode == ISD::SDIVREM;
|
|
if (!isSigned)
|
|
switch (NVT.getSimpleVT()) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
|
|
case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
|
|
case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
|
|
case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
|
|
}
|
|
else
|
|
switch (NVT.getSimpleVT()) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
|
|
case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
|
|
case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
|
|
case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
|
|
}
|
|
|
|
unsigned LoReg, HiReg;
|
|
unsigned ClrOpcode, SExtOpcode;
|
|
switch (NVT.getSimpleVT()) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8:
|
|
LoReg = X86::AL; HiReg = X86::AH;
|
|
ClrOpcode = 0;
|
|
SExtOpcode = X86::CBW;
|
|
break;
|
|
case MVT::i16:
|
|
LoReg = X86::AX; HiReg = X86::DX;
|
|
ClrOpcode = X86::MOV16r0;
|
|
SExtOpcode = X86::CWD;
|
|
break;
|
|
case MVT::i32:
|
|
LoReg = X86::EAX; HiReg = X86::EDX;
|
|
ClrOpcode = X86::MOV32r0;
|
|
SExtOpcode = X86::CDQ;
|
|
break;
|
|
case MVT::i64:
|
|
LoReg = X86::RAX; HiReg = X86::RDX;
|
|
ClrOpcode = X86::MOV64r0;
|
|
SExtOpcode = X86::CQO;
|
|
break;
|
|
}
|
|
|
|
SDValue Tmp0, Tmp1, Tmp2, Tmp3;
|
|
bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
|
|
|
|
SDValue InFlag;
|
|
if (NVT == MVT::i8 && !isSigned) {
|
|
// Special case for div8, just use a move with zero extension to AX to
|
|
// clear the upper 8 bits (AH).
|
|
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Move, Chain;
|
|
if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3)) {
|
|
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N0.getOperand(0) };
|
|
Move =
|
|
SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, MVT::i16, MVT::Other,
|
|
Ops, 5), 0);
|
|
Chain = Move.getValue(1);
|
|
ReplaceUses(N0.getValue(1), Chain);
|
|
} else {
|
|
Move =
|
|
SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, MVT::i16, N0), 0);
|
|
Chain = CurDAG->getEntryNode();
|
|
}
|
|
Chain = CurDAG->getCopyToReg(Chain, X86::AX, Move, SDValue());
|
|
InFlag = Chain.getValue(1);
|
|
} else {
|
|
InFlag =
|
|
CurDAG->getCopyToReg(CurDAG->getEntryNode(),
|
|
LoReg, N0, SDValue()).getValue(1);
|
|
if (isSigned) {
|
|
// Sign extend the low part into the high part.
|
|
InFlag =
|
|
SDValue(CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag), 0);
|
|
} else {
|
|
// Zero out the high part, effectively zero extending the input.
|
|
SDValue ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, NVT), 0);
|
|
InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), HiReg,
|
|
ClrNode, InFlag).getValue(1);
|
|
}
|
|
}
|
|
|
|
if (foldedLoad) {
|
|
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
|
|
SDNode *CNode =
|
|
CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
|
|
InFlag = SDValue(CNode, 1);
|
|
// Update the chain.
|
|
ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
|
|
} else {
|
|
InFlag =
|
|
SDValue(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
|
|
}
|
|
|
|
// Copy the division (low) result, if it is needed.
|
|
if (!N.getValue(0).use_empty()) {
|
|
SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
|
|
LoReg, NVT, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
ReplaceUses(N.getValue(0), Result);
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent-2, ' ') << "=> ";
|
|
DEBUG(Result.getNode()->dump(CurDAG));
|
|
DOUT << "\n";
|
|
#endif
|
|
}
|
|
// Copy the remainder (high) result, if it is needed.
|
|
if (!N.getValue(1).use_empty()) {
|
|
SDValue Result;
|
|
if (HiReg == X86::AH && Subtarget->is64Bit()) {
|
|
// Prevent use of AH in a REX instruction by referencing AX instead.
|
|
// Shift it down 8 bits.
|
|
Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
|
|
X86::AX, MVT::i16, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, MVT::i16, Result,
|
|
CurDAG->getTargetConstant(8, MVT::i8)), 0);
|
|
// Then truncate it down to i8.
|
|
SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
|
|
Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
|
|
MVT::i8, Result, SRIdx), 0);
|
|
} else {
|
|
Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
|
|
HiReg, NVT, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
}
|
|
ReplaceUses(N.getValue(1), Result);
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent-2, ' ') << "=> ";
|
|
DEBUG(Result.getNode()->dump(CurDAG));
|
|
DOUT << "\n";
|
|
#endif
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
Indent -= 2;
|
|
#endif
|
|
|
|
return NULL;
|
|
}
|
|
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
MVT SVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
|
|
if (SVT == MVT::i8 && !Subtarget->is64Bit()) {
|
|
SDValue N0 = Node->getOperand(0);
|
|
|
|
SDValue TruncOp = SDValue(getTruncateTo8Bit(N0), 0);
|
|
unsigned Opc = 0;
|
|
switch (NVT.getSimpleVT()) {
|
|
default: assert(0 && "Unknown sign_extend_inreg!");
|
|
case MVT::i16:
|
|
Opc = X86::MOVSX16rr8;
|
|
break;
|
|
case MVT::i32:
|
|
Opc = X86::MOVSX32rr8;
|
|
break;
|
|
}
|
|
|
|
SDNode *ResNode = CurDAG->getTargetNode(Opc, NVT, TruncOp);
|
|
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent-2, ' ') << "=> ";
|
|
DEBUG(TruncOp.getNode()->dump(CurDAG));
|
|
DOUT << "\n";
|
|
DOUT << std::string(Indent-2, ' ') << "=> ";
|
|
DEBUG(ResNode->dump(CurDAG));
|
|
DOUT << "\n";
|
|
Indent -= 2;
|
|
#endif
|
|
return ResNode;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::TRUNCATE: {
|
|
if (NVT == MVT::i8 && !Subtarget->is64Bit()) {
|
|
SDValue Input = Node->getOperand(0);
|
|
SDNode *ResNode = getTruncateTo8Bit(Input);
|
|
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent-2, ' ') << "=> ";
|
|
DEBUG(ResNode->dump(CurDAG));
|
|
DOUT << "\n";
|
|
Indent -= 2;
|
|
#endif
|
|
return ResNode;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::DECLARE: {
|
|
// Handle DECLARE nodes here because the second operand may have been
|
|
// wrapped in X86ISD::Wrapper.
|
|
SDValue Chain = Node->getOperand(0);
|
|
SDValue N1 = Node->getOperand(1);
|
|
SDValue N2 = Node->getOperand(2);
|
|
if (!isa<FrameIndexSDNode>(N1))
|
|
break;
|
|
int FI = cast<FrameIndexSDNode>(N1)->getIndex();
|
|
if (N2.getOpcode() == ISD::ADD &&
|
|
N2.getOperand(0).getOpcode() == X86ISD::GlobalBaseReg)
|
|
N2 = N2.getOperand(1);
|
|
if (N2.getOpcode() == X86ISD::Wrapper &&
|
|
isa<GlobalAddressSDNode>(N2.getOperand(0))) {
|
|
GlobalValue *GV =
|
|
cast<GlobalAddressSDNode>(N2.getOperand(0))->getGlobal();
|
|
SDValue Tmp1 = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
|
|
SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy());
|
|
SDValue Ops[] = { Tmp1, Tmp2, Chain };
|
|
return CurDAG->getTargetNode(TargetInstrInfo::DECLARE,
|
|
MVT::Other, Ops, 3);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
SDNode *ResNode = SelectCode(N);
|
|
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent-2, ' ') << "=> ";
|
|
if (ResNode == NULL || ResNode == N.getNode())
|
|
DEBUG(N.getNode()->dump(CurDAG));
|
|
else
|
|
DEBUG(ResNode->dump(CurDAG));
|
|
DOUT << "\n";
|
|
Indent -= 2;
|
|
#endif
|
|
|
|
return ResNode;
|
|
}
|
|
|
|
bool X86DAGToDAGISel::
|
|
SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
|
|
std::vector<SDValue> &OutOps) {
|
|
SDValue Op0, Op1, Op2, Op3;
|
|
switch (ConstraintCode) {
|
|
case 'o': // offsetable ??
|
|
case 'v': // not offsetable ??
|
|
default: return true;
|
|
case 'm': // memory
|
|
if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3))
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
OutOps.push_back(Op0);
|
|
OutOps.push_back(Op1);
|
|
OutOps.push_back(Op2);
|
|
OutOps.push_back(Op3);
|
|
return false;
|
|
}
|
|
|
|
/// createX86ISelDag - This pass converts a legalized DAG into a
|
|
/// X86-specific DAG, ready for instruction scheduling.
|
|
///
|
|
FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, bool Fast) {
|
|
return new X86DAGToDAGISel(TM, Fast);
|
|
}
|