mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-03 00:47:07 +00:00
282bf4e578
The patch defines new or refines existing generic scheduling classes to match the behavior of the SSE instructions. It also maps those scheduling classes on the related SSE instructions. <rdar://problem/15607571> llvm-svn: 202065
262 lines
8.5 KiB
TableGen
262 lines
8.5 KiB
TableGen
//=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the machine model for Haswell to support instruction
|
|
// scheduling and other instruction cost heuristics.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def HaswellModel : SchedMachineModel {
|
|
// All x86 instructions are modeled as a single micro-op, and HW can decode 4
|
|
// instructions per cycle.
|
|
let IssueWidth = 4;
|
|
let MicroOpBufferSize = 192; // Based on the reorder buffer.
|
|
let LoadLatency = 4;
|
|
let MispredictPenalty = 16;
|
|
|
|
// FIXME: SSE4 and AVX are unimplemented. This flag is set to allow
|
|
// the scheduler to assign a default model to unrecognized opcodes.
|
|
let CompleteModel = 0;
|
|
}
|
|
|
|
let SchedModel = HaswellModel in {
|
|
|
|
// Haswell can issue micro-ops to 8 different ports in one cycle.
|
|
|
|
// Ports 0, 1, 5, and 6 handle all computation.
|
|
// Port 4 gets the data half of stores. Store data can be available later than
|
|
// the store address, but since we don't model the latency of stores, we can
|
|
// ignore that.
|
|
// Ports 2 and 3 are identical. They handle loads and the address half of
|
|
// stores. Port 7 can handle address calculations.
|
|
def HWPort0 : ProcResource<1>;
|
|
def HWPort1 : ProcResource<1>;
|
|
def HWPort2 : ProcResource<1>;
|
|
def HWPort3 : ProcResource<1>;
|
|
def HWPort4 : ProcResource<1>;
|
|
def HWPort5 : ProcResource<1>;
|
|
def HWPort6 : ProcResource<1>;
|
|
def HWPort7 : ProcResource<1>;
|
|
|
|
// Many micro-ops are capable of issuing on multiple ports.
|
|
def HWPort23 : ProcResGroup<[HWPort2, HWPort3]>;
|
|
def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>;
|
|
def HWPort05 : ProcResGroup<[HWPort0, HWPort5]>;
|
|
def HWPort06 : ProcResGroup<[HWPort0, HWPort6]>;
|
|
def HWPort15 : ProcResGroup<[HWPort1, HWPort5]>;
|
|
def HWPort16 : ProcResGroup<[HWPort1, HWPort6]>;
|
|
def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>;
|
|
def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>;
|
|
|
|
// 60 Entry Unified Scheduler
|
|
def HWPortAny : ProcResGroup<[HWPort0, HWPort1, HWPort2, HWPort3, HWPort4,
|
|
HWPort5, HWPort6, HWPort7]> {
|
|
let BufferSize=60;
|
|
}
|
|
|
|
// Integer division issued on port 0.
|
|
def HWDivider : ProcResource<1>;
|
|
|
|
// Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4
|
|
// cycles after the memory operand.
|
|
def : ReadAdvance<ReadAfterLd, 4>;
|
|
|
|
// Many SchedWrites are defined in pairs with and without a folded load.
|
|
// Instructions with folded loads are usually micro-fused, so they only appear
|
|
// as two micro-ops when queued in the reservation station.
|
|
// This multiclass defines the resource usage for variants with and without
|
|
// folded loads.
|
|
multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW,
|
|
ProcResourceKind ExePort,
|
|
int Lat> {
|
|
// Register variant is using a single cycle on ExePort.
|
|
def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
|
|
|
|
// Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the
|
|
// latency.
|
|
def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> {
|
|
let Latency = !add(Lat, 4);
|
|
}
|
|
}
|
|
|
|
// A folded store needs a cycle on port 4 for the store data, but it does not
|
|
// need an extra port 2/3 cycle to recompute the address.
|
|
def : WriteRes<WriteRMW, [HWPort4]>;
|
|
|
|
// Store_addr on 237.
|
|
// Store_data on 4.
|
|
def : WriteRes<WriteStore, [HWPort237, HWPort4]>;
|
|
def : WriteRes<WriteLoad, [HWPort23]> { let Latency = 4; }
|
|
def : WriteRes<WriteMove, [HWPort0156]>;
|
|
def : WriteRes<WriteZero, []>;
|
|
|
|
defm : HWWriteResPair<WriteALU, HWPort0156, 1>;
|
|
defm : HWWriteResPair<WriteIMul, HWPort1, 3>;
|
|
def : WriteRes<WriteIMulH, []> { let Latency = 3; }
|
|
defm : HWWriteResPair<WriteShift, HWPort06, 1>;
|
|
defm : HWWriteResPair<WriteJump, HWPort06, 1>;
|
|
|
|
// This is for simple LEAs with one or two input operands.
|
|
// The complex ones can only execute on port 1, and they require two cycles on
|
|
// the port to read all inputs. We don't model that.
|
|
def : WriteRes<WriteLEA, [HWPort15]>;
|
|
|
|
// This is quite rough, latency depends on the dividend.
|
|
def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
|
|
let Latency = 25;
|
|
let ResourceCycles = [1, 10];
|
|
}
|
|
def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> {
|
|
let Latency = 29;
|
|
let ResourceCycles = [1, 1, 10];
|
|
}
|
|
|
|
// Scalar and vector floating point.
|
|
defm : HWWriteResPair<WriteFAdd, HWPort1, 3>;
|
|
defm : HWWriteResPair<WriteFMul, HWPort0, 5>;
|
|
defm : HWWriteResPair<WriteFDiv, HWPort0, 12>; // 10-14 cycles.
|
|
defm : HWWriteResPair<WriteFRcp, HWPort0, 5>;
|
|
defm : HWWriteResPair<WriteFSqrt, HWPort0, 15>;
|
|
defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>;
|
|
defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>;
|
|
defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>;
|
|
defm : HWWriteResPair<WriteFShuffle, HWPort5, 1>;
|
|
defm : HWWriteResPair<WriteFBlend, HWPort015, 1>;
|
|
defm : HWWriteResPair<WriteFShuffle256, HWPort5, 3>;
|
|
|
|
def : WriteRes<WriteFVarBlend, [HWPort5]> {
|
|
let Latency = 2;
|
|
let ResourceCycles = [2];
|
|
}
|
|
def : WriteRes<WriteFVarBlendLd, [HWPort5, HWPort23]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [2, 1];
|
|
}
|
|
|
|
// Vector integer operations.
|
|
defm : HWWriteResPair<WriteVecShift, HWPort0, 1>;
|
|
defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>;
|
|
defm : HWWriteResPair<WriteVecALU, HWPort15, 1>;
|
|
defm : HWWriteResPair<WriteVecIMul, HWPort0, 5>;
|
|
defm : HWWriteResPair<WriteShuffle, HWPort5, 1>;
|
|
defm : HWWriteResPair<WriteBlend, HWPort15, 1>;
|
|
defm : HWWriteResPair<WriteShuffle256, HWPort5, 3>;
|
|
|
|
def : WriteRes<WriteVarBlend, [HWPort5]> {
|
|
let Latency = 2;
|
|
let ResourceCycles = [2];
|
|
}
|
|
def : WriteRes<WriteVarBlendLd, [HWPort5, HWPort23]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [2, 1];
|
|
}
|
|
|
|
def : WriteRes<WriteVarVecShift, [HWPort0, HWPort5]> {
|
|
let Latency = 2;
|
|
let ResourceCycles = [2, 1];
|
|
}
|
|
def : WriteRes<WriteVarVecShiftLd, [HWPort0, HWPort5, HWPort23]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [2, 1, 1];
|
|
}
|
|
|
|
def : WriteRes<WriteMPSAD, [HWPort0, HWPort5]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [1, 2];
|
|
}
|
|
def : WriteRes<WriteMPSADLd, [HWPort23, HWPort0, HWPort5]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [1, 1, 2];
|
|
}
|
|
|
|
// String instructions.
|
|
// Packed Compare Implicit Length Strings, Return Mask
|
|
def : WriteRes<WritePCmpIStrM, [HWPort0]> {
|
|
let Latency = 10;
|
|
let ResourceCycles = [3];
|
|
}
|
|
def : WriteRes<WritePCmpIStrMLd, [HWPort0, HWPort23]> {
|
|
let Latency = 10;
|
|
let ResourceCycles = [3, 1];
|
|
}
|
|
|
|
// Packed Compare Explicit Length Strings, Return Mask
|
|
def : WriteRes<WritePCmpEStrM, [HWPort0, HWPort16, HWPort5]> {
|
|
let Latency = 10;
|
|
let ResourceCycles = [3, 2, 4];
|
|
}
|
|
def : WriteRes<WritePCmpEStrMLd, [HWPort05, HWPort16, HWPort23]> {
|
|
let Latency = 10;
|
|
let ResourceCycles = [6, 2, 1];
|
|
}
|
|
|
|
// Packed Compare Implicit Length Strings, Return Index
|
|
def : WriteRes<WritePCmpIStrI, [HWPort0]> {
|
|
let Latency = 11;
|
|
let ResourceCycles = [3];
|
|
}
|
|
def : WriteRes<WritePCmpIStrILd, [HWPort0, HWPort23]> {
|
|
let Latency = 11;
|
|
let ResourceCycles = [3, 1];
|
|
}
|
|
|
|
// Packed Compare Explicit Length Strings, Return Index
|
|
def : WriteRes<WritePCmpEStrI, [HWPort05, HWPort16]> {
|
|
let Latency = 11;
|
|
let ResourceCycles = [6, 2];
|
|
}
|
|
def : WriteRes<WritePCmpEStrILd, [HWPort0, HWPort16, HWPort5, HWPort23]> {
|
|
let Latency = 11;
|
|
let ResourceCycles = [3, 2, 2, 1];
|
|
}
|
|
|
|
// AES Instructions.
|
|
def : WriteRes<WriteAESDecEnc, [HWPort5]> {
|
|
let Latency = 7;
|
|
let ResourceCycles = [1];
|
|
}
|
|
def : WriteRes<WriteAESDecEncLd, [HWPort5, HWPort23]> {
|
|
let Latency = 7;
|
|
let ResourceCycles = [1, 1];
|
|
}
|
|
|
|
def : WriteRes<WriteAESIMC, [HWPort5]> {
|
|
let Latency = 14;
|
|
let ResourceCycles = [2];
|
|
}
|
|
def : WriteRes<WriteAESIMCLd, [HWPort5, HWPort23]> {
|
|
let Latency = 14;
|
|
let ResourceCycles = [2, 1];
|
|
}
|
|
|
|
def : WriteRes<WriteAESKeyGen, [HWPort0, HWPort5]> {
|
|
let Latency = 10;
|
|
let ResourceCycles = [2, 8];
|
|
}
|
|
def : WriteRes<WriteAESKeyGenLd, [HWPort0, HWPort5, HWPort23]> {
|
|
let Latency = 10;
|
|
let ResourceCycles = [2, 7, 1];
|
|
}
|
|
|
|
// Carry-less multiplication instructions.
|
|
def : WriteRes<WriteCLMul, [HWPort0, HWPort5]> {
|
|
let Latency = 7;
|
|
let ResourceCycles = [2, 1];
|
|
}
|
|
def : WriteRes<WriteCLMulLd, [HWPort0, HWPort5, HWPort23]> {
|
|
let Latency = 7;
|
|
let ResourceCycles = [2, 1, 1];
|
|
}
|
|
|
|
def : WriteRes<WriteSystem, [HWPort0156]> { let Latency = 100; }
|
|
def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; }
|
|
def : WriteRes<WriteFence, [HWPort23, HWPort4]>;
|
|
def : WriteRes<WriteNop, []>;
|
|
} // SchedModel
|