mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-07 11:51:13 +00:00
0681be8ccc
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it. The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly. Differential Revision: https://reviews.llvm.org/D45017 llvm-svn: 328806
89 lines
2.8 KiB
C++
89 lines
2.8 KiB
C++
//===-------- llvm/unittest/CodeGen/ScalableVectorMVTsTest.cpp ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
TEST(ScalableVectorMVTsTest, IntegerMVTs) {
|
|
for (auto VecTy : MVT::integer_scalable_vector_valuetypes()) {
|
|
ASSERT_TRUE(VecTy.isValid());
|
|
ASSERT_TRUE(VecTy.isInteger());
|
|
ASSERT_TRUE(VecTy.isVector());
|
|
ASSERT_TRUE(VecTy.isScalableVector());
|
|
ASSERT_TRUE(VecTy.getScalarType().isValid());
|
|
|
|
ASSERT_FALSE(VecTy.isFloatingPoint());
|
|
}
|
|
}
|
|
|
|
TEST(ScalableVectorMVTsTest, FloatMVTs) {
|
|
for (auto VecTy : MVT::fp_scalable_vector_valuetypes()) {
|
|
ASSERT_TRUE(VecTy.isValid());
|
|
ASSERT_TRUE(VecTy.isFloatingPoint());
|
|
ASSERT_TRUE(VecTy.isVector());
|
|
ASSERT_TRUE(VecTy.isScalableVector());
|
|
ASSERT_TRUE(VecTy.getScalarType().isValid());
|
|
|
|
ASSERT_FALSE(VecTy.isInteger());
|
|
}
|
|
}
|
|
|
|
TEST(ScalableVectorMVTsTest, HelperFuncs) {
|
|
LLVMContext Ctx;
|
|
|
|
// Create with scalable flag
|
|
EVT Vnx4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/true);
|
|
ASSERT_TRUE(Vnx4i32.isScalableVector());
|
|
|
|
// Create with separate MVT::ElementCount
|
|
auto EltCnt = MVT::ElementCount(2, true);
|
|
EVT Vnx2i32 = EVT::getVectorVT(Ctx, MVT::i32, EltCnt);
|
|
ASSERT_TRUE(Vnx2i32.isScalableVector());
|
|
|
|
// Create with inline MVT::ElementCount
|
|
EVT Vnx2i64 = EVT::getVectorVT(Ctx, MVT::i64, {2, true});
|
|
ASSERT_TRUE(Vnx2i64.isScalableVector());
|
|
|
|
// Check that changing scalar types/element count works
|
|
EXPECT_EQ(Vnx2i32.widenIntegerVectorElementType(Ctx), Vnx2i64);
|
|
EXPECT_EQ(Vnx4i32.getHalfNumVectorElementsVT(Ctx), Vnx2i32);
|
|
|
|
// Check that overloaded '*' and '/' operators work
|
|
EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt * 2), MVT::nxv4i64);
|
|
EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt / 2), MVT::nxv1i64);
|
|
|
|
// Check that float->int conversion works
|
|
EVT Vnx2f64 = EVT::getVectorVT(Ctx, MVT::f64, {2, true});
|
|
EXPECT_EQ(Vnx2f64.changeTypeToInteger(), Vnx2i64);
|
|
|
|
// Check fields inside MVT::ElementCount
|
|
EltCnt = Vnx4i32.getVectorElementCount();
|
|
EXPECT_EQ(EltCnt.Min, 4U);
|
|
ASSERT_TRUE(EltCnt.Scalable);
|
|
|
|
// Check that fixed-length vector types aren't scalable.
|
|
EVT V8i32 = EVT::getVectorVT(Ctx, MVT::i32, 8);
|
|
ASSERT_FALSE(V8i32.isScalableVector());
|
|
EVT V4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, false});
|
|
ASSERT_FALSE(V4f64.isScalableVector());
|
|
|
|
// Check that MVT::ElementCount works for fixed-length types.
|
|
EltCnt = V8i32.getVectorElementCount();
|
|
EXPECT_EQ(EltCnt.Min, 8U);
|
|
ASSERT_FALSE(EltCnt.Scalable);
|
|
}
|
|
|
|
}
|