244 lines
7.5 KiB
C++

//===----------- RPCUtilsTest.cpp - Unit tests the Orc RPC utils ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/RPCChannel.h"
#include "llvm/ExecutionEngine/Orc/RPCUtils.h"
#include "gtest/gtest.h"
#include <queue>
using namespace llvm;
using namespace llvm::orc;
using namespace llvm::orc::remote;
class Queue : public std::queue<char> {
public:
std::mutex& getLock() { return Lock; }
private:
std::mutex Lock;
};
class QueueChannel : public RPCChannel {
public:
QueueChannel(Queue &InQueue, Queue &OutQueue)
: InQueue(InQueue), OutQueue(OutQueue) {}
std::error_code readBytes(char *Dst, unsigned Size) override {
while (Size != 0) {
// If there's nothing to read then yield.
while (InQueue.empty())
std::this_thread::yield();
// Lock the channel and read what we can.
std::lock_guard<std::mutex> Lock(InQueue.getLock());
while (!InQueue.empty() && Size) {
*Dst++ = InQueue.front();
--Size;
InQueue.pop();
}
}
return std::error_code();
}
std::error_code appendBytes(const char *Src, unsigned Size) override {
std::lock_guard<std::mutex> Lock(OutQueue.getLock());
while (Size--)
OutQueue.push(*Src++);
return std::error_code();
}
std::error_code send() override { return std::error_code(); }
private:
Queue &InQueue;
Queue &OutQueue;
};
class DummyRPC : public testing::Test,
public RPC<QueueChannel> {
public:
enum FuncId : uint32_t {
VoidBoolId = RPCFunctionIdTraits<FuncId>::FirstValidId,
IntIntId,
AllTheTypesId
};
typedef Function<VoidBoolId, void(bool)> VoidBool;
typedef Function<IntIntId, int32_t(int32_t)> IntInt;
typedef Function<AllTheTypesId, void(int8_t, uint8_t, int16_t, uint16_t,
int32_t, uint32_t, int64_t, uint64_t,
bool, std::string, std::vector<int>)>
AllTheTypes;
};
TEST_F(DummyRPC, TestAsyncVoidBool) {
Queue Q1, Q2;
QueueChannel C1(Q1, Q2);
QueueChannel C2(Q2, Q1);
// Make an async call.
auto ResOrErr = callAsyncWithSeq<VoidBool>(C1, true);
EXPECT_TRUE(!!ResOrErr) << "Simple call over queue failed";
{
// Expect a call to Proc1.
auto EC = expect<VoidBool>(C2,
[&](bool &B) {
EXPECT_EQ(B, true)
<< "Bool serialization broken";
return std::error_code();
});
EXPECT_FALSE(EC) << "Simple expect over queue failed";
}
{
// Wait for the result.
auto EC = waitForResult(C1, ResOrErr->second, handleNone);
EXPECT_FALSE(EC) << "Could not read result.";
}
// Verify that the function returned ok.
auto Val = ResOrErr->first.get();
EXPECT_TRUE(Val) << "Remote void function failed to execute.";
}
TEST_F(DummyRPC, TestAsyncIntInt) {
Queue Q1, Q2;
QueueChannel C1(Q1, Q2);
QueueChannel C2(Q2, Q1);
// Make an async call.
auto ResOrErr = callAsyncWithSeq<IntInt>(C1, 21);
EXPECT_TRUE(!!ResOrErr) << "Simple call over queue failed";
{
// Expect a call to Proc1.
auto EC = expect<IntInt>(C2,
[&](int32_t I) {
EXPECT_EQ(I, 21)
<< "Bool serialization broken";
return 2 * I;
});
EXPECT_FALSE(EC) << "Simple expect over queue failed";
}
{
// Wait for the result.
auto EC = waitForResult(C1, ResOrErr->second, handleNone);
EXPECT_FALSE(EC) << "Could not read result.";
}
// Verify that the function returned ok.
auto Val = ResOrErr->first.get();
EXPECT_TRUE(!!Val) << "Remote int function failed to execute.";
EXPECT_EQ(*Val, 42) << "Remote int function return wrong value.";
}
TEST_F(DummyRPC, TestSerialization) {
Queue Q1, Q2;
QueueChannel C1(Q1, Q2);
QueueChannel C2(Q2, Q1);
// Make a call to Proc1.
std::vector<int> v({42, 7});
auto ResOrErr = callAsyncWithSeq<AllTheTypes>(C1,
-101,
250,
-10000,
10000,
-1000000000,
1000000000,
-10000000000,
10000000000,
true,
"foo",
v);
EXPECT_TRUE(!!ResOrErr)
<< "Big (serialization test) call over queue failed";
{
// Expect a call to Proc1.
auto EC = expect<AllTheTypes>(C2,
[&](int8_t &s8,
uint8_t &u8,
int16_t &s16,
uint16_t &u16,
int32_t &s32,
uint32_t &u32,
int64_t &s64,
uint64_t &u64,
bool &b,
std::string &s,
std::vector<int> &v) {
EXPECT_EQ(s8, -101)
<< "int8_t serialization broken";
EXPECT_EQ(u8, 250)
<< "uint8_t serialization broken";
EXPECT_EQ(s16, -10000)
<< "int16_t serialization broken";
EXPECT_EQ(u16, 10000)
<< "uint16_t serialization broken";
EXPECT_EQ(s32, -1000000000)
<< "int32_t serialization broken";
EXPECT_EQ(u32, 1000000000ULL)
<< "uint32_t serialization broken";
EXPECT_EQ(s64, -10000000000)
<< "int64_t serialization broken";
EXPECT_EQ(u64, 10000000000ULL)
<< "uint64_t serialization broken";
EXPECT_EQ(b, true)
<< "bool serialization broken";
EXPECT_EQ(s, "foo")
<< "std::string serialization broken";
EXPECT_EQ(v, std::vector<int>({42, 7}))
<< "std::vector serialization broken";
return std::error_code();
});
EXPECT_FALSE(EC) << "Big (serialization test) call over queue failed";
}
{
// Wait for the result.
auto EC = waitForResult(C1, ResOrErr->second, handleNone);
EXPECT_FALSE(EC) << "Could not read result.";
}
// Verify that the function returned ok.
auto Val = ResOrErr->first.get();
EXPECT_TRUE(Val) << "Remote void function failed to execute.";
}
// Test the synchronous call API.
// FIXME: Re-enable once deadlock encountered on S390 has been debugged / fixed,
// see http://lab.llvm.org:8011/builders/clang-s390x-linux/builds/3459
// TEST_F(DummyRPC, TestSynchronousCall) {
// Queue Q1, Q2;
// QueueChannel C1(Q1, Q2);
// QueueChannel C2(Q2, Q1);
//
// auto ServerResult =
// std::async(std::launch::async,
// [&]() {
// return expect<IntInt>(C2, [&](int32_t V) { return V; });
// });
//
// auto ValOrErr = callST<IntInt>(C1, 42);
//
// EXPECT_FALSE(!!ServerResult.get())
// << "Server returned an error.";
// EXPECT_TRUE(!!ValOrErr)
// << "callST returned an error.";
// EXPECT_EQ(*ValOrErr, 42)
// << "Incorrect callST<IntInt> result";
// }