llvm-mirror/test/Transforms/SROA/vector-promotion.ll
Chandler Carruth 17e363c242 PR14055: Implement support for sub-vector operations in SROA.
Now if we can transform an alloca into a single vector value, but it has
subvector, non-element accesses, we form the appropriate shufflevectors
to allow SROA to proceed. This fixes PR14055 which pointed out a very
common pattern that SROA couldn't handle -- mixed vec3 and vec4
operations on a single alloca.

llvm-svn: 168418
2012-11-21 08:16:30 +00:00

341 lines
12 KiB
LLVM

; RUN: opt < %s -sroa -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"
%S1 = type { i64, [42 x float] }
define i32 @test1(<4 x i32> %x, <4 x i32> %y) {
; CHECK: @test1
entry:
%a = alloca [2 x <4 x i32>]
; CHECK-NOT: alloca
%a.x = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 0
store <4 x i32> %x, <4 x i32>* %a.x
%a.y = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1
store <4 x i32> %y, <4 x i32>* %a.y
; CHECK-NOT: store
%a.tmp1 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 0, i64 2
%tmp1 = load i32* %a.tmp1
%a.tmp2 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1, i64 3
%tmp2 = load i32* %a.tmp2
%a.tmp3 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1, i64 0
%tmp3 = load i32* %a.tmp3
; CHECK-NOT: load
; CHECK: extractelement <4 x i32> %x, i32 2
; CHECK-NEXT: extractelement <4 x i32> %y, i32 3
; CHECK-NEXT: extractelement <4 x i32> %y, i32 0
%tmp4 = add i32 %tmp1, %tmp2
%tmp5 = add i32 %tmp3, %tmp4
ret i32 %tmp5
; CHECK-NEXT: add
; CHECK-NEXT: add
; CHECK-NEXT: ret
}
define i32 @test2(<4 x i32> %x, <4 x i32> %y) {
; CHECK: @test2
entry:
%a = alloca [2 x <4 x i32>]
; CHECK-NOT: alloca
%a.x = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 0
store <4 x i32> %x, <4 x i32>* %a.x
%a.y = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1
store <4 x i32> %y, <4 x i32>* %a.y
; CHECK-NOT: store
%a.tmp1 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 0, i64 2
%tmp1 = load i32* %a.tmp1
%a.tmp2 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1, i64 3
%tmp2 = load i32* %a.tmp2
%a.tmp3 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1, i64 0
%a.tmp3.cast = bitcast i32* %a.tmp3 to <2 x i32>*
%tmp3.vec = load <2 x i32>* %a.tmp3.cast
%tmp3 = extractelement <2 x i32> %tmp3.vec, i32 0
; CHECK-NOT: load
; CHECK: %[[extract1:.*]] = extractelement <4 x i32> %x, i32 2
; CHECK-NEXT: %[[extract2:.*]] = extractelement <4 x i32> %y, i32 3
; CHECK-NEXT: %[[extract3:.*]] = shufflevector <4 x i32> %y, <4 x i32> undef, <2 x i32> <i32 0, i32 1>
; CHECK-NEXT: %[[extract4:.*]] = extractelement <2 x i32> %[[extract3]], i32 0
%tmp4 = add i32 %tmp1, %tmp2
%tmp5 = add i32 %tmp3, %tmp4
ret i32 %tmp5
; CHECK-NEXT: %[[sum1:.*]] = add i32 %[[extract1]], %[[extract2]]
; CHECK-NEXT: %[[sum2:.*]] = add i32 %[[extract4]], %[[sum1]]
; CHECK-NEXT: ret i32 %[[sum2]]
}
define i32 @test3(<4 x i32> %x, <4 x i32> %y) {
; CHECK: @test3
entry:
%a = alloca [2 x <4 x i32>]
; CHECK-NOT: alloca
%a.x = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 0
store <4 x i32> %x, <4 x i32>* %a.x
%a.y = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1
store <4 x i32> %y, <4 x i32>* %a.y
; CHECK-NOT: store
%a.y.cast = bitcast <4 x i32>* %a.y to i8*
call void @llvm.memset.p0i8.i32(i8* %a.y.cast, i8 0, i32 16, i32 1, i1 false)
; CHECK-NOT: memset
%a.tmp1 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 0, i64 2
%a.tmp1.cast = bitcast i32* %a.tmp1 to i8*
call void @llvm.memset.p0i8.i32(i8* %a.tmp1.cast, i8 -1, i32 4, i32 1, i1 false)
%tmp1 = load i32* %a.tmp1
%a.tmp2 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1, i64 3
%tmp2 = load i32* %a.tmp2
%a.tmp3 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1, i64 0
%tmp3 = load i32* %a.tmp3
; CHECK-NOT: load
; CHECK: %[[insert:.*]] = insertelement <4 x i32> %x, i32 -1, i32 2
; CHECK-NEXT: extractelement <4 x i32> %[[insert]], i32 2
; CHECK-NEXT: extractelement <4 x i32> zeroinitializer, i32 3
; CHECK-NEXT: extractelement <4 x i32> zeroinitializer, i32 0
%tmp4 = add i32 %tmp1, %tmp2
%tmp5 = add i32 %tmp3, %tmp4
ret i32 %tmp5
; CHECK-NEXT: add
; CHECK-NEXT: add
; CHECK-NEXT: ret
}
define i32 @test4(<4 x i32> %x, <4 x i32> %y, <4 x i32>* %z) {
; CHECK: @test4
entry:
%a = alloca [2 x <4 x i32>]
; CHECK-NOT: alloca
%a.x = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 0
store <4 x i32> %x, <4 x i32>* %a.x
%a.y = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1
store <4 x i32> %y, <4 x i32>* %a.y
; CHECK-NOT: store
%a.y.cast = bitcast <4 x i32>* %a.y to i8*
%z.cast = bitcast <4 x i32>* %z to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.y.cast, i8* %z.cast, i32 16, i32 1, i1 false)
; CHECK-NOT: memcpy
%a.tmp1 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 0, i64 2
%a.tmp1.cast = bitcast i32* %a.tmp1 to i8*
%z.tmp1 = getelementptr inbounds <4 x i32>* %z, i64 0, i64 2
%z.tmp1.cast = bitcast i32* %z.tmp1 to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.tmp1.cast, i8* %z.tmp1.cast, i32 4, i32 1, i1 false)
%tmp1 = load i32* %a.tmp1
%a.tmp2 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1, i64 3
%tmp2 = load i32* %a.tmp2
%a.tmp3 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1, i64 0
%tmp3 = load i32* %a.tmp3
; CHECK-NOT: memcpy
; CHECK: %[[load:.*]] = load <4 x i32>* %z
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds <4 x i32>* %z, i64 0, i64 2
; CHECK-NEXT: %[[element_load:.*]] = load i32* %[[gep]]
; CHECK-NEXT: %[[insert:.*]] = insertelement <4 x i32> %x, i32 %[[element_load]], i32 2
; CHECK-NEXT: extractelement <4 x i32> %[[insert]], i32 2
; CHECK-NEXT: extractelement <4 x i32> %[[load]], i32 3
; CHECK-NEXT: extractelement <4 x i32> %[[load]], i32 0
%tmp4 = add i32 %tmp1, %tmp2
%tmp5 = add i32 %tmp3, %tmp4
ret i32 %tmp5
; CHECK-NEXT: add
; CHECK-NEXT: add
; CHECK-NEXT: ret
}
define i32 @test5(<4 x i32> %x, <4 x i32> %y, <4 x i32>* %z) {
; CHECK: @test5
; The same as the above, but with reversed source and destination for the
; element memcpy, and a self copy.
entry:
%a = alloca [2 x <4 x i32>]
; CHECK-NOT: alloca
%a.x = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 0
store <4 x i32> %x, <4 x i32>* %a.x
%a.y = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1
store <4 x i32> %y, <4 x i32>* %a.y
; CHECK-NOT: store
%a.y.cast = bitcast <4 x i32>* %a.y to i8*
%a.x.cast = bitcast <4 x i32>* %a.x to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.x.cast, i8* %a.y.cast, i32 16, i32 1, i1 false)
; CHECK-NOT: memcpy
%a.tmp1 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 0, i64 2
%a.tmp1.cast = bitcast i32* %a.tmp1 to i8*
%z.tmp1 = getelementptr inbounds <4 x i32>* %z, i64 0, i64 2
%z.tmp1.cast = bitcast i32* %z.tmp1 to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %z.tmp1.cast, i8* %a.tmp1.cast, i32 4, i32 1, i1 false)
%tmp1 = load i32* %a.tmp1
%a.tmp2 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1, i64 3
%tmp2 = load i32* %a.tmp2
%a.tmp3 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1, i64 0
%tmp3 = load i32* %a.tmp3
; CHECK-NOT: memcpy
; CHECK: %[[gep:.*]] = getelementptr inbounds <4 x i32>* %z, i64 0, i64 2
; CHECK-NEXT: %[[extract:.*]] = extractelement <4 x i32> %y, i32 2
; CHECK-NEXT: store i32 %[[extract]], i32* %[[gep]]
; CHECK-NEXT: extractelement <4 x i32> %y, i32 2
; CHECK-NEXT: extractelement <4 x i32> %y, i32 3
; CHECK-NEXT: extractelement <4 x i32> %y, i32 0
%tmp4 = add i32 %tmp1, %tmp2
%tmp5 = add i32 %tmp3, %tmp4
ret i32 %tmp5
; CHECK-NEXT: add
; CHECK-NEXT: add
; CHECK-NEXT: ret
}
declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind
declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i32, i1) nounwind
define i64 @test6(<4 x i64> %x, <4 x i64> %y, i64 %n) {
; CHECK: @test6
; The old scalarrepl pass would wrongly drop the store to the second alloca.
; PR13254
%tmp = alloca { <4 x i64>, <4 x i64> }
%p0 = getelementptr inbounds { <4 x i64>, <4 x i64> }* %tmp, i32 0, i32 0
store <4 x i64> %x, <4 x i64>* %p0
; CHECK: store <4 x i64> %x,
%p1 = getelementptr inbounds { <4 x i64>, <4 x i64> }* %tmp, i32 0, i32 1
store <4 x i64> %y, <4 x i64>* %p1
; CHECK: store <4 x i64> %y,
%addr = getelementptr inbounds { <4 x i64>, <4 x i64> }* %tmp, i32 0, i32 0, i64 %n
%res = load i64* %addr, align 4
ret i64 %res
}
define <4 x i32> @test_subvec_store() {
; CHECK: @test_subvec_store
entry:
%a = alloca <4 x i32>
; CHECK-NOT: alloca
%a.gep0 = getelementptr <4 x i32>* %a, i32 0, i32 0
%a.cast0 = bitcast i32* %a.gep0 to <2 x i32>*
store <2 x i32> <i32 0, i32 0>, <2 x i32>* %a.cast0
; CHECK-NOT: store
; CHECK: %[[insert1:.*]] = shufflevector <4 x i32> <i32 0, i32 0, i32 undef, i32 undef>, <4 x i32> undef, <4 x i32> <i32 0, i32 1, {{.*}}>
%a.gep1 = getelementptr <4 x i32>* %a, i32 0, i32 1
%a.cast1 = bitcast i32* %a.gep1 to <2 x i32>*
store <2 x i32> <i32 1, i32 1>, <2 x i32>* %a.cast1
; CHECK-NEXT: %[[insert2:.*]] = shufflevector <4 x i32> <i32 undef, i32 1, i32 1, i32 undef>, <4 x i32> %[[insert1]], <4 x i32> <i32 4, i32 1, i32 2, {{.*}}>
%a.gep2 = getelementptr <4 x i32>* %a, i32 0, i32 2
%a.cast2 = bitcast i32* %a.gep2 to <2 x i32>*
store <2 x i32> <i32 2, i32 2>, <2 x i32>* %a.cast2
; CHECK-NEXT: %[[insert3:.*]] = shufflevector <4 x i32> <i32 undef, i32 undef, i32 2, i32 2>, <4 x i32> %[[insert2]], <4 x i32> <i32 4, i32 5, i32 2, i32 3>
%a.gep3 = getelementptr <4 x i32>* %a, i32 0, i32 3
store i32 3, i32* %a.gep3
; CHECK-NEXT: %[[insert4:.*]] = insertelement <4 x i32> %[[insert3]], i32 3, i32 3
%ret = load <4 x i32>* %a
ret <4 x i32> %ret
; CHECK-NEXT: ret <4 x i32> %[[insert4]]
}
define <4 x i32> @test_subvec_load() {
; CHECK: @test_subvec_load
entry:
%a = alloca <4 x i32>
; CHECK-NOT: alloca
store <4 x i32> <i32 0, i32 1, i32 2, i32 3>, <4 x i32>* %a
; CHECK-NOT: store
%a.gep0 = getelementptr <4 x i32>* %a, i32 0, i32 0
%a.cast0 = bitcast i32* %a.gep0 to <2 x i32>*
%first = load <2 x i32>* %a.cast0
; CHECK-NOT: load
; CHECK: %[[extract1:.*]] = shufflevector <4 x i32> <i32 0, i32 1, i32 2, i32 3>, <4 x i32> undef, <2 x i32> <i32 0, i32 1>
%a.gep1 = getelementptr <4 x i32>* %a, i32 0, i32 1
%a.cast1 = bitcast i32* %a.gep1 to <2 x i32>*
%second = load <2 x i32>* %a.cast1
; CHECK-NEXT: %[[extract2:.*]] = shufflevector <4 x i32> <i32 0, i32 1, i32 2, i32 3>, <4 x i32> undef, <2 x i32> <i32 1, i32 2>
%a.gep2 = getelementptr <4 x i32>* %a, i32 0, i32 2
%a.cast2 = bitcast i32* %a.gep2 to <2 x i32>*
%third = load <2 x i32>* %a.cast2
; CHECK-NEXT: %[[extract3:.*]] = shufflevector <4 x i32> <i32 0, i32 1, i32 2, i32 3>, <4 x i32> undef, <2 x i32> <i32 2, i32 3>
%tmp = shufflevector <2 x i32> %first, <2 x i32> %second, <2 x i32> <i32 0, i32 2>
%ret = shufflevector <2 x i32> %tmp, <2 x i32> %third, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
; CHECK-NEXT: %[[tmp:.*]] = shufflevector <2 x i32> %[[extract1]], <2 x i32> %[[extract2]], <2 x i32> <i32 0, i32 2>
; CHECK-NEXT: %[[ret:.*]] = shufflevector <2 x i32> %[[tmp]], <2 x i32> %[[extract3]], <4 x i32> <i32 0, i32 1, i32 2, i32 3>
ret <4 x i32> %ret
; CHECK-NEXT: ret <4 x i32> %[[ret]]
}
define i32 @PR14212() {
; CHECK: @PR14212
; This caused a crash when "splitting" the load of the i32 in order to promote
; the store of <3 x i8> properly. Heavily reduced from an OpenCL test case.
entry:
%retval = alloca <3 x i8>, align 4
; CHECK-NOT: alloca
store <3 x i8> undef, <3 x i8>* %retval, align 4
%cast = bitcast <3 x i8>* %retval to i32*
%load = load i32* %cast, align 4
ret i32 %load
; CHECK: ret i32
}
define <2 x i8> @PR14349.1(i32 %x) {
; CEHCK: @PR14349.1
; The first testcase for broken SROA rewriting of split integer loads and
; stores due to smaller vector loads and stores. This particular test ensures
; that we can rewrite a split store of an integer to a store of a vector.
entry:
%a = alloca i32
; CHECK-NOT: alloca
store i32 %x, i32* %a
; CHECK-NOT: store
%cast = bitcast i32* %a to <2 x i8>*
%vec = load <2 x i8>* %cast
; CHECK-NOT: load
ret <2 x i8> %vec
; CHECK: %[[trunc:.*]] = trunc i32 %x to i16
; CHECK: %[[cast:.*]] = bitcast i16 %[[trunc]] to <2 x i8>
; CHECK: ret <2 x i8> %[[cast]]
}
define i32 @PR14349.2(<2 x i8> %x) {
; CEHCK: @PR14349.2
; The first testcase for broken SROA rewriting of split integer loads and
; stores due to smaller vector loads and stores. This particular test ensures
; that we can rewrite a split load of an integer to a load of a vector.
entry:
%a = alloca i32
; CHECK-NOT: alloca
%cast = bitcast i32* %a to <2 x i8>*
store <2 x i8> %x, <2 x i8>* %cast
; CHECK-NOT: store
%int = load i32* %a
; CHECK-NOT: load
ret i32 %int
; CHECK: %[[cast:.*]] = bitcast <2 x i8> %x to i16
; CHECK: %[[trunc:.*]] = zext i16 %[[cast]] to i32
; CHECK: %[[insert:.*]] = or i32 %{{.*}}, %[[trunc]]
; CHECK: ret i32 %[[insert]]
}