llvm-mirror/lib/Transforms/IPO/DeadArgumentElimination.cpp
Matthijs Kooijman ff03ea8aeb Commit the new DeadArgElim pass again, this time with the gcc bootstrap failures fixed.
Also add a testcase to reproduce the gcc bootstrap failure in very much reduced form.

llvm-svn: 52677
2008-06-24 16:30:26 +00:00

922 lines
36 KiB
C++

//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass deletes dead arguments from internal functions. Dead argument
// elimination removes arguments which are directly dead, as well as arguments
// only passed into function calls as dead arguments of other functions. This
// pass also deletes dead return values in a similar way.
//
// This pass is often useful as a cleanup pass to run after aggressive
// interprocedural passes, which add possibly-dead arguments or return values.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "deadargelim"
#include "llvm/Transforms/IPO.h"
#include "llvm/CallingConv.h"
#include "llvm/Constant.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include <map>
#include <set>
using namespace llvm;
STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
namespace {
/// DAE - The dead argument elimination pass.
///
class VISIBILITY_HIDDEN DAE : public ModulePass {
public:
/// Struct that represent either a (part of a) return value or a function
/// argument. Used so that arguments and return values can be used
/// interchangably.
struct RetOrArg {
RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
IsArg(IsArg) {}
const Function *F;
unsigned Idx;
bool IsArg;
/// Make RetOrArg comparable, so we can put it into a map
bool operator<(const RetOrArg &O) const {
if (F != O.F)
return F < O.F;
else if (Idx != O.Idx)
return Idx < O.Idx;
else
return IsArg < O.IsArg;
}
/// Make RetOrArg comparable, so we can easily iterate the multimap
bool operator==(const RetOrArg &O) const {
return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
}
};
/// Liveness enum - During our initial pass over the program, we determine
/// that things are either alive or maybe alive. We don't mark anything
/// explicitely dead (even if we know they are), since anything not alive
/// with no registered uses (in Uses) will never be marked alive and will
/// thus become dead in the end.
enum Liveness { Live, MaybeLive };
/// Convenience wrapper
RetOrArg CreateRet(const Function *F, unsigned Idx) {
return RetOrArg(F, Idx, false);
}
/// Convenience wrapper
RetOrArg CreateArg(const Function *F, unsigned Idx) {
return RetOrArg(F, Idx, true);
}
typedef std::multimap<RetOrArg, RetOrArg> UseMap;
/// This map maps a return value or argument to all return values or
/// arguments it uses.
/// For example (indices are left out for clarity):
/// - Uses[ret F] = ret G
/// This means that F calls G, and F returns the value returned by G.
/// - Uses[arg F] = ret G
/// This means that some function calls G and passes its result as an
/// argument to F.
/// - Uses[ret F] = arg F
/// This means that F returns one of its own arguments.
/// - Uses[arg F] = arg G
/// This means that G calls F and passes one of its own (G's) arguments
/// directly to F.
UseMap Uses;
typedef std::set<RetOrArg> LiveSet;
/// This set contains all values that have been determined to be live
LiveSet LiveValues;
typedef SmallVector<RetOrArg, 5> UseVector;
public:
static char ID; // Pass identification, replacement for typeid
DAE() : ModulePass((intptr_t)&ID) {}
bool runOnModule(Module &M);
virtual bool ShouldHackArguments() const { return false; }
private:
Liveness IsMaybeLive(RetOrArg Use, UseVector &MaybeLiveUses);
Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
unsigned RetValNum = 0);
Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
void SurveyFunction(Function &F);
void MarkValue(const RetOrArg &RA, Liveness L,
const UseVector &MaybeLiveUses);
void MarkLive(RetOrArg RA);
bool RemoveDeadStuffFromFunction(Function *F);
bool DeleteDeadVarargs(Function &Fn);
};
}
char DAE::ID = 0;
static RegisterPass<DAE>
X("deadargelim", "Dead Argument Elimination");
namespace {
/// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
/// deletes arguments to functions which are external. This is only for use
/// by bugpoint.
struct DAH : public DAE {
static char ID;
virtual bool ShouldHackArguments() const { return true; }
};
}
char DAH::ID = 0;
static RegisterPass<DAH>
Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
/// createDeadArgEliminationPass - This pass removes arguments from functions
/// which are not used by the body of the function.
///
ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
/// llvm.vastart is never called, the varargs list is dead for the function.
bool DAE::DeleteDeadVarargs(Function &Fn) {
assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
if (Fn.isDeclaration() || !Fn.hasInternalLinkage()) return false;
// Ensure that the function is only directly called.
for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ++I) {
// If this use is anything other than a call site, give up.
CallSite CS = CallSite::get(*I);
Instruction *TheCall = CS.getInstruction();
if (!TheCall) return false; // Not a direct call site?
// The addr of this function is passed to the call.
if (I.getOperandNo() != 0) return false;
}
// Okay, we know we can transform this function if safe. Scan its body
// looking for calls to llvm.vastart.
for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
if (II->getIntrinsicID() == Intrinsic::vastart)
return false;
}
}
}
// If we get here, there are no calls to llvm.vastart in the function body,
// remove the "..." and adjust all the calls.
// Start by computing a new prototype for the function, which is the same as
// the old function, but doesn't have isVarArg set.
const FunctionType *FTy = Fn.getFunctionType();
std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
unsigned NumArgs = Params.size();
// Create the new function body and insert it into the module...
Function *NF = Function::Create(NFTy, Fn.getLinkage());
NF->copyAttributesFrom(&Fn);
Fn.getParent()->getFunctionList().insert(&Fn, NF);
NF->takeName(&Fn);
// Loop over all of the callers of the function, transforming the call sites
// to pass in a smaller number of arguments into the new function.
//
std::vector<Value*> Args;
while (!Fn.use_empty()) {
CallSite CS = CallSite::get(Fn.use_back());
Instruction *Call = CS.getInstruction();
// Pass all the same arguments.
Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
// Drop any attributes that were on the vararg arguments.
PAListPtr PAL = CS.getParamAttrs();
if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
SmallVector<ParamAttrsWithIndex, 8> ParamAttrsVec;
for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
ParamAttrsVec.push_back(PAL.getSlot(i));
PAL = PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end());
}
Instruction *New;
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
Args.begin(), Args.end(), "", Call);
cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
cast<InvokeInst>(New)->setParamAttrs(PAL);
} else {
New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
cast<CallInst>(New)->setParamAttrs(PAL);
if (cast<CallInst>(Call)->isTailCall())
cast<CallInst>(New)->setTailCall();
}
Args.clear();
if (!Call->use_empty())
Call->replaceAllUsesWith(New);
New->takeName(Call);
// Finally, remove the old call from the program, reducing the use-count of
// F.
Call->eraseFromParent();
}
// Since we have now created the new function, splice the body of the old
// function right into the new function, leaving the old rotting hulk of the
// function empty.
NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
// Loop over the argument list, transfering uses of the old arguments over to
// the new arguments, also transfering over the names as well. While we're at
// it, remove the dead arguments from the DeadArguments list.
//
for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
I2 = NF->arg_begin(); I != E; ++I, ++I2) {
// Move the name and users over to the new version.
I->replaceAllUsesWith(I2);
I2->takeName(I);
}
// Finally, nuke the old function.
Fn.eraseFromParent();
return true;
}
/// Convenience function that returns the number of return values. It returns 0
/// for void functions and 1 for functions not returning a struct. It returns
/// the number of struct elements for functions returning a struct.
static unsigned NumRetVals(const Function *F) {
if (F->getReturnType() == Type::VoidTy)
return 0;
else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
return STy->getNumElements();
else
return 1;
}
/// IsMaybeAlive - This checks Use for liveness. If Use is live, returns Live,
/// else returns MaybeLive. Also, adds Use to MaybeLiveUses in the latter case.
DAE::Liveness DAE::IsMaybeLive(RetOrArg Use, UseVector &MaybeLiveUses) {
// We're live if our use is already marked as live
if (LiveValues.count(Use))
return Live;
// We're maybe live otherwise, but remember that we must become live if
// Use becomes live.
MaybeLiveUses.push_back(Use);
return MaybeLive;
}
/// SurveyUse - This looks at a single use of an argument or return value
/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
/// if it causes the used value to become MaybeAlive.
///
/// RetValNum is the return value number to use when this use is used in a
/// return instruction. This is used in the recursion, you should always leave
/// it at 0.
DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
unsigned RetValNum) {
Value *V = *U;
if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
// The value is returned from another function. It's only live when the
// caller's return value is live
RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
// We might be live, depending on the liveness of Use
return IsMaybeLive(Use, MaybeLiveUses);
}
if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
&& IV->hasIndices())
// The use we are examining is inserted into an aggregate. Our liveness
// depends on all uses of that aggregate, but if it is used as a return
// value, only index at which we were inserted counts.
RetValNum = *IV->idx_begin();
// Note that if we are used as the aggregate operand to the insertvalue,
// we don't change RetValNum, but do survey all our uses.
Liveness Result = MaybeLive;
for (Value::use_iterator I = IV->use_begin(),
E = V->use_end(); I != E; ++I) {
Result = SurveyUse(I, MaybeLiveUses, RetValNum);
if (Result == Live)
break;
}
return Result;
}
CallSite CS = CallSite::get(V);
if (CS.getInstruction()) {
Function *F = CS.getCalledFunction();
if (F) {
// Used in a direct call
// Check for vararg. Do - 1 to skip the first operand to call (the
// function itself).
if (U.getOperandNo() - 1 >= F->getFunctionType()->getNumParams())
// The value is passed in through a vararg! Must be live.
return Live;
// Value passed to a normal call. It's only live when the corresponding
// argument (operand number - 1 to skip the function pointer operand) to
// the called function turns out live
RetOrArg Use = CreateArg(F, U.getOperandNo() - 1);
return IsMaybeLive(Use, MaybeLiveUses);
} else {
// Used in any other way? Value must be live.
return Live;
}
}
// Used in any other way? Value must be live.
return Live;
}
/// SurveyUses - This looks at all the uses of the given return value
/// (possibly a partial return value from a function returning a struct).
/// Returns the Liveness deduced from the uses of this value.
///
/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses.
DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
// Assume it's dead (which will only hold if there are no uses at all..)
Liveness Result = MaybeLive;
// Check each use
for (Value::use_iterator I = V->use_begin(),
E = V->use_end(); I != E; ++I) {
Result = SurveyUse(I, MaybeLiveUses);
if (Result == Live)
break;
}
return Result;
}
// SurveyFunction - This performs the initial survey of the specified function,
// checking out whether or not it uses any of its incoming arguments or whether
// any callers use the return value. This fills in the
// LiveValues set and Uses map.
//
// We consider arguments of non-internal functions to be intrinsically alive as
// well as arguments to functions which have their "address taken".
//
void DAE::SurveyFunction(Function &F) {
bool FunctionIntrinsicallyLive = false;
unsigned RetCount = NumRetVals(&F);
// Assume all return values are dead
typedef SmallVector<Liveness, 5> RetVals;
RetVals RetValLiveness(RetCount, MaybeLive);
// These vectors maps each return value to the uses that make it MaybeLive, so
// we can add those to the MaybeLiveRetVals list if the return value
// really turns out to be MaybeLive. Initializes to RetCount empty vectors
typedef SmallVector<UseVector, 5> RetUses;
// Intialized to a list of RetCount empty lists
RetUses MaybeLiveRetUses(RetCount);
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
!= F.getFunctionType()->getReturnType()) {
// We don't support old style multiple return values
FunctionIntrinsicallyLive = true;
break;
}
if (!F.hasInternalLinkage() && (!ShouldHackArguments() || F.isIntrinsic()))
FunctionIntrinsicallyLive = true;
if (!FunctionIntrinsicallyLive) {
DOUT << "DAE - Inspecting callers for fn: " << F.getName() << "\n";
// Keep track of the number of live retvals, so we can skip checks once all
// of them turn out to be live.
unsigned NumLiveRetVals = 0;
const Type *STy = dyn_cast<StructType>(F.getReturnType());
// Loop all uses of the function
for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
// If the function is PASSED IN as an argument, its address has been taken
if (I.getOperandNo() != 0) {
FunctionIntrinsicallyLive = true;
break;
}
// If this use is anything other than a call site, the function is alive.
CallSite CS = CallSite::get(*I);
Instruction *TheCall = CS.getInstruction();
if (!TheCall) { // Not a direct call site?
FunctionIntrinsicallyLive = true;
break;
}
// If we end up here, we are looking at a direct call to our function.
// Now, check how our return value(s) is/are used in this caller. Don't
// bother checking return values if all of them are live already
if (NumLiveRetVals != RetCount) {
if (STy) {
// Check all uses of the return value
for (Value::use_iterator I = TheCall->use_begin(),
E = TheCall->use_end(); I != E; ++I) {
ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
if (Ext && Ext->hasIndices()) {
// This use uses a part of our return value, survey the uses of
// that part and store the results for this index only.
unsigned Idx = *Ext->idx_begin();
if (RetValLiveness[Idx] != Live) {
RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
if (RetValLiveness[Idx] == Live)
NumLiveRetVals++;
}
} else {
// Used by something else than extractvalue. Mark all
// return values as live.
for (unsigned i = 0; i != RetCount; ++i )
RetValLiveness[i] = Live;
NumLiveRetVals = RetCount;
break;
}
}
} else {
// Single return value
RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
if (RetValLiveness[0] == Live)
NumLiveRetVals = RetCount;
}
}
}
}
if (FunctionIntrinsicallyLive) {
DOUT << "DAE - Intrinsically live fn: " << F.getName() << "\n";
// Mark all arguments as live
unsigned i = 0;
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
AI != E; ++AI, ++i)
MarkLive(CreateArg(&F, i));
// Mark all return values as live
i = 0;
for (unsigned i = 0, e = RetValLiveness.size(); i != e; ++i)
MarkLive(CreateRet(&F, i));
return;
}
// Now we've inspected all callers, record the liveness of our return values.
for (unsigned i = 0, e = RetValLiveness.size(); i != e; ++i) {
RetOrArg Ret = CreateRet(&F, i);
// Mark the result down
MarkValue(Ret, RetValLiveness[i], MaybeLiveRetUses[i]);
}
DOUT << "DAE - Inspecting args for fn: " << F.getName() << "\n";
// Now, check all of our arguments
unsigned i = 0;
UseVector MaybeLiveArgUses;
for (Function::arg_iterator AI = F.arg_begin(),
E = F.arg_end(); AI != E; ++AI, ++i) {
// See what the effect of this use is (recording any uses that cause
// MaybeLive in MaybeLiveArgUses)
Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
RetOrArg Arg = CreateArg(&F, i);
// Mark the result down
MarkValue(Arg, Result, MaybeLiveArgUses);
// Clear the vector again for the next iteration
MaybeLiveArgUses.clear();
}
}
/// MarkValue - This function marks the liveness of RA depending on L. If L is
/// MaybeLive, it also records any uses in MaybeLiveUses such that RA will be
/// marked live if any use in MaybeLiveUses gets marked live later on.
void DAE::MarkValue(const RetOrArg &RA, Liveness L,
const UseVector &MaybeLiveUses) {
switch (L) {
case Live: MarkLive(RA); break;
case MaybeLive:
{
// Note any uses of this value, so this return value can be
// marked live whenever one of the uses becomes live.
UseMap::iterator Where = Uses.begin();
for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
UE = MaybeLiveUses.end(); UI != UE; ++UI)
Where = Uses.insert(Where, UseMap::value_type(*UI, RA));
break;
}
}
}
/// MarkLive - Mark the given return value or argument as live. Additionally,
/// mark any values that are used by this value (according to Uses) live as
/// well.
void DAE::MarkLive(RetOrArg RA) {
if (!LiveValues.insert(RA).second)
return; // We were already marked Live
if (RA.IsArg)
DOUT << "DAE - Marking argument " << RA.Idx << " to function "
<< RA.F->getNameStart() << " live\n";
else
DOUT << "DAE - Marking return value " << RA.Idx << " of function "
<< RA.F->getNameStart() << " live\n";
// We don't use upper_bound (or equal_range) here, because our recursive call
// to ourselves is likely to mark the upper_bound (which is the first value
// not belonging to RA) to become erased and the iterator invalidated.
UseMap::iterator Begin = Uses.lower_bound(RA);
UseMap::iterator E = Uses.end();
UseMap::iterator I;
for (I = Begin; I != E && I->first == RA; ++I)
MarkLive(I->second);
// Erase RA from the Uses map (from the lower bound to wherever we ended up
// after the loop).
Uses.erase(Begin, I);
}
// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
// that are not in LiveValues. This function is a noop for any Function created
// by this function before, or any function that was not inspected for liveness.
// specified by the DeadArguments list. Transform the function and all of the
// callees of the function to not have these arguments.
//
bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// Quick exit path for external functions
if (!F->hasInternalLinkage() && (!ShouldHackArguments() || F->isIntrinsic()))
return false;
// Start by computing a new prototype for the function, which is the same as
// the old function, but has fewer arguments and a different return type.
const FunctionType *FTy = F->getFunctionType();
std::vector<const Type*> Params;
// Set up to build a new list of parameter attributes
SmallVector<ParamAttrsWithIndex, 8> ParamAttrsVec;
const PAListPtr &PAL = F->getParamAttrs();
// The existing function return attributes.
ParameterAttributes RAttrs = PAL.getParamAttrs(0);
// Find out the new return value
const Type *RetTy = FTy->getReturnType();
const Type *NRetTy;
unsigned RetCount = NumRetVals(F);
// Explicitely track if anything changed, for debugging
bool Changed = false;
// -1 means unused, other numbers are the new index
SmallVector<int, 5> NewRetIdxs(RetCount, -1);
std::vector<const Type*> RetTypes;
if (RetTy != Type::VoidTy) {
const StructType *STy = dyn_cast<StructType>(RetTy);
if (STy)
// Look at each of the original return values individually
for (unsigned i = 0; i != RetCount; ++i) {
RetOrArg Ret = CreateRet(F, i);
if (LiveValues.erase(Ret)) {
RetTypes.push_back(STy->getElementType(i));
NewRetIdxs[i] = RetTypes.size() - 1;
} else {
++NumRetValsEliminated;
DOUT << "DAE - Removing return value " << i << " from "
<< F->getNameStart() << "\n";
Changed = true;
}
}
else
// We used to return a single value
if (LiveValues.erase(CreateRet(F, 0))) {
RetTypes.push_back(RetTy);
NewRetIdxs[0] = 0;
} else {
DOUT << "DAE - Removing return value from " << F->getNameStart()
<< "\n";
++NumRetValsEliminated;
Changed = true;
}
if (RetTypes.size() > 1 || STy && STy->getNumElements() == RetTypes.size())
// More than one return type? Return a struct with them. Also, if we used
// to return a struct and didn't change the number of return values,
// return a struct again. This prevents chaning {something} into something
// and {} into void.
// Make the new struct packed if we used to return a packed struct
// already.
NRetTy = StructType::get(RetTypes, STy->isPacked());
else if (RetTypes.size() == 1)
// One return type? Just a simple value then, but only if we didn't use to
// return a struct with that simple value before.
NRetTy = RetTypes.front();
else if (RetTypes.size() == 0)
// No return types? Make it void, but only if we didn't use to return {}
NRetTy = Type::VoidTy;
} else {
NRetTy = Type::VoidTy;
}
// Remove any incompatible attributes
RAttrs &= ~ParamAttr::typeIncompatible(NRetTy);
if (RAttrs)
ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
// Remember which arguments are still alive
SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
// Construct the new parameter list from non-dead arguments. Also construct
// a new set of parameter attributes to correspond. Skip the first parameter
// attribute, since that belongs to the return value.
unsigned i = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I, ++i) {
RetOrArg Arg = CreateArg(F, i);
if (LiveValues.erase(Arg)) {
Params.push_back(I->getType());
ArgAlive[i] = true;
// Get the original parameter attributes (skipping the first one, that is
// for the return value
if (ParameterAttributes Attrs = PAL.getParamAttrs(i + 1))
ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Params.size(), Attrs));
} else {
++NumArgumentsEliminated;
DOUT << "DAE - Removing argument " << i << " (" << I->getNameStart()
<< ") from " << F->getNameStart() << "\n";
Changed = true;
}
}
// Reconstruct the ParamAttrsList based on the vector we constructed.
PAListPtr NewPAL = PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end());
// Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
// have zero fixed arguments.
//
// Not that we apply this hack for a vararg fuction that does not have any
// arguments anymore, but did have them before (so don't bother fixing
// functions that were already broken wrt CWriter).
bool ExtraArgHack = false;
if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
ExtraArgHack = true;
Params.push_back(Type::Int32Ty);
}
// Create the new function type based on the recomputed parameters.
FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
// No change?
if (NFTy == FTy)
return false;
// The function type is only allowed to be different if we actually left out
// an argument or return value
assert(Changed && "Function type changed while no arguments or retrurn values"
"were removed!");
// Create the new function body and insert it into the module...
Function *NF = Function::Create(NFTy, F->getLinkage());
NF->copyAttributesFrom(F);
NF->setParamAttrs(NewPAL);
// Insert the new function before the old function, so we won't be processing
// it again
F->getParent()->getFunctionList().insert(F, NF);
NF->takeName(F);
// Loop over all of the callers of the function, transforming the call sites
// to pass in a smaller number of arguments into the new function.
//
std::vector<Value*> Args;
while (!F->use_empty()) {
CallSite CS = CallSite::get(F->use_back());
Instruction *Call = CS.getInstruction();
ParamAttrsVec.clear();
const PAListPtr &CallPAL = CS.getParamAttrs();
// The call return attributes.
ParameterAttributes RAttrs = CallPAL.getParamAttrs(0);
// Adjust in case the function was changed to return void.
RAttrs &= ~ParamAttr::typeIncompatible(NF->getReturnType());
if (RAttrs)
ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
// Declare these outside of the loops, so we can reuse them for the second
// loop, which loops the varargs
CallSite::arg_iterator I = CS.arg_begin();
unsigned i = 0;
// Loop over those operands, corresponding to the normal arguments to the
// original function, and add those that are still alive.
for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
if (ArgAlive[i]) {
Args.push_back(*I);
// Get original parameter attributes, but skip return attributes
if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
}
if (ExtraArgHack)
Args.push_back(UndefValue::get(Type::Int32Ty));
// Push any varargs arguments on the list. Don't forget their attributes.
for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
Args.push_back(*I);
if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
}
// Reconstruct the ParamAttrsList based on the vector we constructed.
PAListPtr NewCallPAL = PAListPtr::get(ParamAttrsVec.begin(),
ParamAttrsVec.end());
Instruction *New;
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
Args.begin(), Args.end(), "", Call);
cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
cast<InvokeInst>(New)->setParamAttrs(NewCallPAL);
} else {
New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
cast<CallInst>(New)->setParamAttrs(NewCallPAL);
if (cast<CallInst>(Call)->isTailCall())
cast<CallInst>(New)->setTailCall();
}
Args.clear();
if (!Call->use_empty()) {
if (New->getType() == Call->getType()) {
// Return type not changed? Just replace users then
Call->replaceAllUsesWith(New);
New->takeName(Call);
} else if (New->getType() == Type::VoidTy) {
// Our return value has uses, but they will get removed later on.
// Replace by null for now.
Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
} else {
assert(isa<StructType>(RetTy) && "Return type changed, but not into a"
"void. The old return type must have"
"been a struct!");
// The original return value was a struct, update all uses (which are
// all extractvalue instructions).
for (Value::use_iterator I = Call->use_begin(), E = Call->use_end();
I != E;) {
assert(isa<ExtractValueInst>(*I) && "Return value not only used by"
"extractvalue?");
ExtractValueInst *EV = cast<ExtractValueInst>(*I);
// Increment now, since we're about to throw away this use.
++I;
assert(EV->hasIndices() && "Return value used by extractvalue without"
"indices?");
unsigned Idx = *EV->idx_begin();
if (NewRetIdxs[Idx] != -1) {
if (RetTypes.size() > 1) {
// We're still returning a struct, create a new extractvalue
// instruction with the first index updated
std::vector<unsigned> NewIdxs(EV->idx_begin(), EV->idx_end());
NewIdxs[0] = NewRetIdxs[Idx];
Value *NEV = ExtractValueInst::Create(New, NewIdxs.begin(),
NewIdxs.end(), "retval",
EV);
EV->replaceAllUsesWith(NEV);
EV->eraseFromParent();
} else {
// We are now only returning a simple value, remove the
// extractvalue
EV->replaceAllUsesWith(New);
EV->eraseFromParent();
}
} else {
// Value unused, replace uses by null for now, they will get removed
// later on
EV->replaceAllUsesWith(Constant::getNullValue(EV->getType()));
EV->eraseFromParent();
}
}
New->takeName(Call);
}
}
// Finally, remove the old call from the program, reducing the use-count of
// F.
Call->eraseFromParent();
}
// Since we have now created the new function, splice the body of the old
// function right into the new function, leaving the old rotting hulk of the
// function empty.
NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
// Loop over the argument list, transfering uses of the old arguments over to
// the new arguments, also transfering over the names as well.
i = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
I2 = NF->arg_begin(); I != E; ++I, ++i)
if (ArgAlive[i]) {
// If this is a live argument, move the name and users over to the new
// version.
I->replaceAllUsesWith(I2);
I2->takeName(I);
++I2;
} else {
// If this argument is dead, replace any uses of it with null constants
// (these are guaranteed to become unused later on)
I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
}
// If we change the return value of the function we must rewrite any return
// instructions. Check this now.
if (F->getReturnType() != NF->getReturnType())
for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
Value *RetVal;
if (NFTy->getReturnType() == Type::VoidTy) {
RetVal = 0;
} else {
assert (isa<StructType>(RetTy));
// The original return value was a struct, insert
// extractvalue/insertvalue chains to extract only the values we need
// to return and insert them into our new result.
// This does generate messy code, but we'll let it to instcombine to
// clean that up
Value *OldRet = RI->getOperand(0);
// Start out building up our return value from undef
RetVal = llvm::UndefValue::get(NRetTy);
for (unsigned i = 0; i != RetCount; ++i)
if (NewRetIdxs[i] != -1) {
ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
"newret", RI);
if (RetTypes.size() > 1) {
// We're still returning a struct, so reinsert the value into
// our new return value at the new index
RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
"oldret");
} else {
// We are now only returning a simple value, so just return the
// extracted value
RetVal = EV;
}
}
}
// Replace the return instruction with one returning the new return
// value (possibly 0 if we became void).
ReturnInst::Create(RetVal, RI);
BB->getInstList().erase(RI);
}
// Now that the old function is dead, delete it.
F->eraseFromParent();
return true;
}
bool DAE::runOnModule(Module &M) {
bool Changed = false;
// First pass: Do a simple check to see if any functions can have their "..."
// removed. We can do this if they never call va_start. This loop cannot be
// fused with the next loop, because deleting a function invalidates
// information computed while surveying other functions.
DOUT << "DAE - Deleting dead varargs\n";
for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
Function &F = *I++;
if (F.getFunctionType()->isVarArg())
Changed |= DeleteDeadVarargs(F);
}
// Second phase:loop through the module, determining which arguments are live.
// We assume all arguments are dead unless proven otherwise (allowing us to
// determine that dead arguments passed into recursive functions are dead).
//
DOUT << "DAE - Determining liveness\n";
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
SurveyFunction(*I);
// Now, remove all dead arguments and return values from each function in
// turn
for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
// Increment now, because the function will probably get removed (ie
// replaced by a new one)
Function *F = I++;
Changed |= RemoveDeadStuffFromFunction(F);
}
return Changed;
}