llvm-mirror/test/Transforms/SCCP/apint-ipsccp4.ll
Dan Gohman 5f6f8101d5 Split the Add, Sub, and Mul instruction opcodes into separate
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.

For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.

This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt

llvm-svn: 72897
2009-06-04 22:49:04 +00:00

50 lines
1.1 KiB
LLVM

; This test makes sure that these instructions are properly constant propagated.
; RUN: llvm-as < %s | opt -ipsccp | llvm-dis | not grep load
; RUN: llvm-as < %s | opt -ipsccp | llvm-dis | not grep add
; RUN: llvm-as < %s | opt -ipsccp | llvm-dis | not grep phi
@Y = constant [2 x { i212, float }] [ { i212, float } { i212 12, float 1.0 },
{ i212, float } { i212 37, float 2.0 } ]
define internal float @test2() {
%A = getelementptr [2 x { i212, float}]* @Y, i32 0, i32 1, i32 1
%B = load float* %A
ret float %B
}
define internal float @test3() {
%A = getelementptr [2 x { i212, float}]* @Y, i32 0, i32 0, i32 1
%B = load float* %A
ret float %B
}
define internal float @test()
{
%A = call float @test2()
%B = call float @test3()
%E = fdiv float %B, %A
ret float %E
}
define float @All()
{
%A = call float @test()
%B = fcmp oge float %A, 1.0
br i1 %B, label %T, label %F
T:
%C = fadd float %A, 1.0
br label %exit
F:
%D = fadd float %A, 2.0
br label %exit
exit:
%E = phi float [%C, %T], [%D, %F]
ret float %E
}