llvm/lib/Target/ARM64/ARM64InstrInfo.td

5074 lines
250 KiB
TableGen
Raw Normal View History

//===- ARM64InstrInfo.td - Describe the ARM64 Instructions -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// ARM64 Instruction definitions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ARM Instruction Predicate Definitions.
//
def HasFPARMv8 : Predicate<"Subtarget->hasFPARMv8()">,
AssemblerPredicate<"FeatureFPARMv8", "fp-armv8">;
def HasNEON : Predicate<"Subtarget->hasNEON()">,
AssemblerPredicate<"FeatureNEON", "neon">;
def HasCrypto : Predicate<"Subtarget->hasCrypto()">,
AssemblerPredicate<"FeatureCrypto", "crypto">;
def HasCRC : Predicate<"Subtarget->hasCRC()">,
AssemblerPredicate<"FeatureCRC", "crc">;
def IsLE : Predicate<"Subtarget->isLittleEndian()">;
def IsBE : Predicate<"!Subtarget->isLittleEndian()">;
//===----------------------------------------------------------------------===//
// ARM64-specific DAG Nodes.
//
// SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS
def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2,
[SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>, SDTCisVT<1, i32>]>;
// SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS
def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3,
[SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisInt<0>,
SDTCisVT<3, i32>]>;
// SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS
def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
[SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>,
SDTCisVT<1, i32>,
SDTCisVT<4, i32>]>;
def SDT_ARM64Brcond : SDTypeProfile<0, 3,
[SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>]>;
def SDT_ARM64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>;
def SDT_ARM64tbz : SDTypeProfile<0, 3, [SDTCisVT<0, i64>, SDTCisVT<1, i64>,
SDTCisVT<2, OtherVT>]>;
def SDT_ARM64CSel : SDTypeProfile<1, 4,
[SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisInt<3>,
SDTCisVT<4, i32>]>;
def SDT_ARM64FCmp : SDTypeProfile<0, 2,
[SDTCisFP<0>,
SDTCisSameAs<0, 1>]>;
def SDT_ARM64Dup : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
def SDT_ARM64DupLane : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>;
def SDT_ARM64Zip : SDTypeProfile<1, 2, [SDTCisVec<0>,
SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>]>;
def SDT_ARM64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>;
def SDT_ARM64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
def SDT_ARM64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisInt<2>, SDTCisInt<3>]>;
def SDT_ARM64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
def SDT_ARM64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>, SDTCisInt<3>]>;
def SDT_ARM64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>;
def SDT_ARM64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
def SDT_ARM64fcmpz : SDTypeProfile<1, 1, []>;
def SDT_ARM64fcmp : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>;
def SDT_ARM64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>]>;
def SDT_ARM64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>,
SDTCisSameAs<0,3>]>;
def SDT_ARM64TCRET : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
def SDT_ARM64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>;
def SDT_ARM64ITOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>;
def SDT_ARM64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>,
SDTCisPtrTy<1>]>;
def SDT_ARM64WrapperLarge : SDTypeProfile<1, 4,
[SDTCisVT<0, i64>, SDTCisVT<1, i32>,
SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>,
SDTCisSameAs<1, 4>]>;
// Node definitions.
def ARM64adrp : SDNode<"ARM64ISD::ADRP", SDTIntUnaryOp, []>;
def ARM64addlow : SDNode<"ARM64ISD::ADDlow", SDTIntBinOp, []>;
def ARM64LOADgot : SDNode<"ARM64ISD::LOADgot", SDTIntUnaryOp>;
def ARM64callseq_start : SDNode<"ISD::CALLSEQ_START",
SDCallSeqStart<[ SDTCisVT<0, i32> ]>,
[SDNPHasChain, SDNPOutGlue]>;
def ARM64callseq_end : SDNode<"ISD::CALLSEQ_END",
SDCallSeqEnd<[ SDTCisVT<0, i32>,
SDTCisVT<1, i32> ]>,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def ARM64call : SDNode<"ARM64ISD::CALL",
SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def ARM64brcond : SDNode<"ARM64ISD::BRCOND", SDT_ARM64Brcond,
[SDNPHasChain]>;
def ARM64cbz : SDNode<"ARM64ISD::CBZ", SDT_ARM64cbz,
[SDNPHasChain]>;
def ARM64cbnz : SDNode<"ARM64ISD::CBNZ", SDT_ARM64cbz,
[SDNPHasChain]>;
def ARM64tbz : SDNode<"ARM64ISD::TBZ", SDT_ARM64tbz,
[SDNPHasChain]>;
def ARM64tbnz : SDNode<"ARM64ISD::TBNZ", SDT_ARM64tbz,
[SDNPHasChain]>;
def ARM64csel : SDNode<"ARM64ISD::CSEL", SDT_ARM64CSel>;
def ARM64csinv : SDNode<"ARM64ISD::CSINV", SDT_ARM64CSel>;
def ARM64csneg : SDNode<"ARM64ISD::CSNEG", SDT_ARM64CSel>;
def ARM64csinc : SDNode<"ARM64ISD::CSINC", SDT_ARM64CSel>;
def ARM64retflag : SDNode<"ARM64ISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def ARM64adc : SDNode<"ARM64ISD::ADC", SDTBinaryArithWithFlagsIn >;
def ARM64sbc : SDNode<"ARM64ISD::SBC", SDTBinaryArithWithFlagsIn>;
def ARM64add_flag : SDNode<"ARM64ISD::ADDS", SDTBinaryArithWithFlagsOut,
[SDNPCommutative]>;
def ARM64sub_flag : SDNode<"ARM64ISD::SUBS", SDTBinaryArithWithFlagsOut>;
def ARM64and_flag : SDNode<"ARM64ISD::ANDS", SDTBinaryArithWithFlagsOut,
[SDNPCommutative]>;
def ARM64adc_flag : SDNode<"ARM64ISD::ADCS", SDTBinaryArithWithFlagsInOut>;
def ARM64sbc_flag : SDNode<"ARM64ISD::SBCS", SDTBinaryArithWithFlagsInOut>;
def ARM64threadpointer : SDNode<"ARM64ISD::THREAD_POINTER", SDTPtrLeaf>;
def ARM64fcmp : SDNode<"ARM64ISD::FCMP", SDT_ARM64FCmp>;
def ARM64fmax : SDNode<"ARM64ISD::FMAX", SDTFPBinOp>;
def ARM64fmin : SDNode<"ARM64ISD::FMIN", SDTFPBinOp>;
def ARM64dup : SDNode<"ARM64ISD::DUP", SDT_ARM64Dup>;
def ARM64duplane8 : SDNode<"ARM64ISD::DUPLANE8", SDT_ARM64DupLane>;
def ARM64duplane16 : SDNode<"ARM64ISD::DUPLANE16", SDT_ARM64DupLane>;
def ARM64duplane32 : SDNode<"ARM64ISD::DUPLANE32", SDT_ARM64DupLane>;
def ARM64duplane64 : SDNode<"ARM64ISD::DUPLANE64", SDT_ARM64DupLane>;
def ARM64zip1 : SDNode<"ARM64ISD::ZIP1", SDT_ARM64Zip>;
def ARM64zip2 : SDNode<"ARM64ISD::ZIP2", SDT_ARM64Zip>;
def ARM64uzp1 : SDNode<"ARM64ISD::UZP1", SDT_ARM64Zip>;
def ARM64uzp2 : SDNode<"ARM64ISD::UZP2", SDT_ARM64Zip>;
def ARM64trn1 : SDNode<"ARM64ISD::TRN1", SDT_ARM64Zip>;
def ARM64trn2 : SDNode<"ARM64ISD::TRN2", SDT_ARM64Zip>;
def ARM64movi_edit : SDNode<"ARM64ISD::MOVIedit", SDT_ARM64MOVIedit>;
def ARM64movi_shift : SDNode<"ARM64ISD::MOVIshift", SDT_ARM64MOVIshift>;
def ARM64movi_msl : SDNode<"ARM64ISD::MOVImsl", SDT_ARM64MOVIshift>;
def ARM64mvni_shift : SDNode<"ARM64ISD::MVNIshift", SDT_ARM64MOVIshift>;
def ARM64mvni_msl : SDNode<"ARM64ISD::MVNImsl", SDT_ARM64MOVIshift>;
def ARM64movi : SDNode<"ARM64ISD::MOVI", SDT_ARM64MOVIedit>;
def ARM64fmov : SDNode<"ARM64ISD::FMOV", SDT_ARM64MOVIedit>;
def ARM64rev16 : SDNode<"ARM64ISD::REV16", SDT_ARM64UnaryVec>;
def ARM64rev32 : SDNode<"ARM64ISD::REV32", SDT_ARM64UnaryVec>;
def ARM64rev64 : SDNode<"ARM64ISD::REV64", SDT_ARM64UnaryVec>;
def ARM64ext : SDNode<"ARM64ISD::EXT", SDT_ARM64ExtVec>;
def ARM64vashr : SDNode<"ARM64ISD::VASHR", SDT_ARM64vshift>;
def ARM64vlshr : SDNode<"ARM64ISD::VLSHR", SDT_ARM64vshift>;
def ARM64vshl : SDNode<"ARM64ISD::VSHL", SDT_ARM64vshift>;
def ARM64sqshli : SDNode<"ARM64ISD::SQSHL_I", SDT_ARM64vshift>;
def ARM64uqshli : SDNode<"ARM64ISD::UQSHL_I", SDT_ARM64vshift>;
def ARM64sqshlui : SDNode<"ARM64ISD::SQSHLU_I", SDT_ARM64vshift>;
def ARM64srshri : SDNode<"ARM64ISD::SRSHR_I", SDT_ARM64vshift>;
def ARM64urshri : SDNode<"ARM64ISD::URSHR_I", SDT_ARM64vshift>;
def ARM64not: SDNode<"ARM64ISD::NOT", SDT_ARM64unvec>;
def ARM64bit: SDNode<"ARM64ISD::BIT", SDT_ARM64trivec>;
def ARM64bsl: SDNode<"ARM64ISD::BSL", SDT_ARM64trivec>;
def ARM64cmeq: SDNode<"ARM64ISD::CMEQ", SDT_ARM64binvec>;
def ARM64cmge: SDNode<"ARM64ISD::CMGE", SDT_ARM64binvec>;
def ARM64cmgt: SDNode<"ARM64ISD::CMGT", SDT_ARM64binvec>;
def ARM64cmhi: SDNode<"ARM64ISD::CMHI", SDT_ARM64binvec>;
def ARM64cmhs: SDNode<"ARM64ISD::CMHS", SDT_ARM64binvec>;
def ARM64fcmeq: SDNode<"ARM64ISD::FCMEQ", SDT_ARM64fcmp>;
def ARM64fcmge: SDNode<"ARM64ISD::FCMGE", SDT_ARM64fcmp>;
def ARM64fcmgt: SDNode<"ARM64ISD::FCMGT", SDT_ARM64fcmp>;
def ARM64cmeqz: SDNode<"ARM64ISD::CMEQz", SDT_ARM64unvec>;
def ARM64cmgez: SDNode<"ARM64ISD::CMGEz", SDT_ARM64unvec>;
def ARM64cmgtz: SDNode<"ARM64ISD::CMGTz", SDT_ARM64unvec>;
def ARM64cmlez: SDNode<"ARM64ISD::CMLEz", SDT_ARM64unvec>;
def ARM64cmltz: SDNode<"ARM64ISD::CMLTz", SDT_ARM64unvec>;
def ARM64cmtst : PatFrag<(ops node:$LHS, node:$RHS),
(ARM64not (ARM64cmeqz (and node:$LHS, node:$RHS)))>;
def ARM64fcmeqz: SDNode<"ARM64ISD::FCMEQz", SDT_ARM64fcmpz>;
def ARM64fcmgez: SDNode<"ARM64ISD::FCMGEz", SDT_ARM64fcmpz>;
def ARM64fcmgtz: SDNode<"ARM64ISD::FCMGTz", SDT_ARM64fcmpz>;
def ARM64fcmlez: SDNode<"ARM64ISD::FCMLEz", SDT_ARM64fcmpz>;
def ARM64fcmltz: SDNode<"ARM64ISD::FCMLTz", SDT_ARM64fcmpz>;
def ARM64bici: SDNode<"ARM64ISD::BICi", SDT_ARM64vecimm>;
def ARM64orri: SDNode<"ARM64ISD::ORRi", SDT_ARM64vecimm>;
def ARM64neg : SDNode<"ARM64ISD::NEG", SDT_ARM64unvec>;
def ARM64tcret: SDNode<"ARM64ISD::TC_RETURN", SDT_ARM64TCRET,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def ARM64Prefetch : SDNode<"ARM64ISD::PREFETCH", SDT_ARM64PREFETCH,
[SDNPHasChain, SDNPSideEffect]>;
def ARM64sitof: SDNode<"ARM64ISD::SITOF", SDT_ARM64ITOF>;
def ARM64uitof: SDNode<"ARM64ISD::UITOF", SDT_ARM64ITOF>;
def ARM64tlsdesc_call : SDNode<"ARM64ISD::TLSDESC_CALL", SDT_ARM64TLSDescCall,
[SDNPInGlue, SDNPOutGlue, SDNPHasChain,
SDNPVariadic]>;
def ARM64WrapperLarge : SDNode<"ARM64ISD::WrapperLarge", SDT_ARM64WrapperLarge>;
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ARM64 Instruction Predicate Definitions.
//
def HasZCZ : Predicate<"Subtarget->hasZeroCycleZeroing()">;
def NoZCZ : Predicate<"!Subtarget->hasZeroCycleZeroing()">;
def IsDarwin : Predicate<"Subtarget->isTargetDarwin()">;
def IsNotDarwin: Predicate<"!Subtarget->isTargetDarwin()">;
def ForCodeSize : Predicate<"ForCodeSize">;
def NotForCodeSize : Predicate<"!ForCodeSize">;
include "ARM64InstrFormats.td"
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Miscellaneous instructions.
//===----------------------------------------------------------------------===//
let Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
[(ARM64callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
[(ARM64callseq_end timm:$amt1, timm:$amt2)]>;
} // Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1
let isReMaterializable = 1, isCodeGenOnly = 1 in {
// FIXME: The following pseudo instructions are only needed because remat
// cannot handle multiple instructions. When that changes, they can be
// removed, along with the ARM64Wrapper node.
let AddedComplexity = 10 in
def LOADgot : Pseudo<(outs GPR64:$dst), (ins i64imm:$addr),
[(set GPR64:$dst, (ARM64LOADgot tglobaladdr:$addr))]>,
Sched<[WriteLDAdr]>;
// The MOVaddr instruction should match only when the add is not folded
// into a load or store address.
def MOVaddr
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
[(set GPR64:$dst, (ARM64addlow (ARM64adrp tglobaladdr:$hi),
tglobaladdr:$low))]>,
Sched<[WriteAdrAdr]>;
def MOVaddrJT
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
[(set GPR64:$dst, (ARM64addlow (ARM64adrp tjumptable:$hi),
tjumptable:$low))]>,
Sched<[WriteAdrAdr]>;
def MOVaddrCP
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
[(set GPR64:$dst, (ARM64addlow (ARM64adrp tconstpool:$hi),
tconstpool:$low))]>,
Sched<[WriteAdrAdr]>;
def MOVaddrBA
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
[(set GPR64:$dst, (ARM64addlow (ARM64adrp tblockaddress:$hi),
tblockaddress:$low))]>,
Sched<[WriteAdrAdr]>;
def MOVaddrTLS
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
[(set GPR64:$dst, (ARM64addlow (ARM64adrp tglobaltlsaddr:$hi),
tglobaltlsaddr:$low))]>,
Sched<[WriteAdrAdr]>;
def MOVaddrEXT
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
[(set GPR64:$dst, (ARM64addlow (ARM64adrp texternalsym:$hi),
texternalsym:$low))]>,
Sched<[WriteAdrAdr]>;
} // isReMaterializable, isCodeGenOnly
def : Pat<(ARM64LOADgot tglobaltlsaddr:$addr),
(LOADgot tglobaltlsaddr:$addr)>;
def : Pat<(ARM64LOADgot texternalsym:$addr),
(LOADgot texternalsym:$addr)>;
def : Pat<(ARM64LOADgot tconstpool:$addr),
(LOADgot tconstpool:$addr)>;
//===----------------------------------------------------------------------===//
// System instructions.
//===----------------------------------------------------------------------===//
def HINT : HintI<"hint">;
def : InstAlias<"nop", (HINT 0b000)>;
def : InstAlias<"yield",(HINT 0b001)>;
def : InstAlias<"wfe", (HINT 0b010)>;
def : InstAlias<"wfi", (HINT 0b011)>;
def : InstAlias<"sev", (HINT 0b100)>;
def : InstAlias<"sevl", (HINT 0b101)>;
// As far as LLVM is concerned this writes to the system's exclusive monitors.
let mayLoad = 1, mayStore = 1 in
def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">;
def DMB : CRmSystemI<barrier_op, 0b101, "dmb">;
def DSB : CRmSystemI<barrier_op, 0b100, "dsb">;
def ISB : CRmSystemI<barrier_op, 0b110, "isb">;
def : InstAlias<"clrex", (CLREX 0xf)>;
def : InstAlias<"isb", (ISB 0xf)>;
def MRS : MRSI;
def MSR : MSRI;
def MSRpstate: MSRpstateI;
// The thread pointer (on Linux, at least, where this has been implemented) is
// TPIDR_EL0.
def : Pat<(ARM64threadpointer), (MRS 0xde82)>;
// Generic system instructions
def SYSxt : SystemXtI<0, "sys">;
def SYSLxt : SystemLXtI<1, "sysl">;
def : InstAlias<"sys $op1, $Cn, $Cm, $op2",
(SYSxt imm0_7:$op1, sys_cr_op:$Cn,
sys_cr_op:$Cm, imm0_7:$op2, XZR)>;
//===----------------------------------------------------------------------===//
// Move immediate instructions.
//===----------------------------------------------------------------------===//
defm MOVK : InsertImmediate<0b11, "movk">;
defm MOVN : MoveImmediate<0b00, "movn">;
let PostEncoderMethod = "fixMOVZ" in
defm MOVZ : MoveImmediate<0b10, "movz">;
def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, imm0_65535:$imm, 0)>;
def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, imm0_65535:$imm, 0)>;
def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, imm0_65535:$imm, 0)>;
def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, imm0_65535:$imm, 0)>;
def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, imm0_65535:$imm, 0)>;
def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, imm0_65535:$imm, 0)>;
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g3:$sym, 48)>;
def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g2:$sym, 32)>;
def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g1:$sym, 16)>;
def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g0:$sym, 0)>;
def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g1:$sym, 16)>;
def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g0:$sym, 0)>;
let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1,
isAsCheapAsAMove = 1 in {
// FIXME: The following pseudo instructions are only needed because remat
// cannot handle multiple instructions. When that changes, we can select
// directly to the real instructions and get rid of these pseudos.
def MOVi32imm
: Pseudo<(outs GPR32:$dst), (ins i32imm:$src),
[(set GPR32:$dst, imm:$src)]>,
Sched<[WriteImm]>;
def MOVi64imm
: Pseudo<(outs GPR64:$dst), (ins i64imm:$src),
[(set GPR64:$dst, imm:$src)]>,
Sched<[WriteImm]>;
} // isReMaterializable, isCodeGenOnly
// If possible, we want to use MOVi32imm even for 64-bit moves. This gives the
// eventual expansion code fewer bits to worry about getting right. Marshalling
// the types is a little tricky though:
def i64imm_32bit : ImmLeaf<i64, [{
return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm);
}]>;
def trunc_imm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue(), MVT::i32);
}]>;
def : Pat<(i64 i64imm_32bit:$src),
(SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>;
// Deal with the various forms of (ELF) large addressing with MOVZ/MOVK
// sequences.
def : Pat<(ARM64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2,
tglobaladdr:$g1, tglobaladdr:$g0),
(MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g3, 48),
tglobaladdr:$g2, 32),
tglobaladdr:$g1, 16),
tglobaladdr:$g0, 0)>;
def : Pat<(ARM64WrapperLarge tblockaddress:$g3, tblockaddress:$g2,
tblockaddress:$g1, tblockaddress:$g0),
(MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g3, 48),
tblockaddress:$g2, 32),
tblockaddress:$g1, 16),
tblockaddress:$g0, 0)>;
def : Pat<(ARM64WrapperLarge tconstpool:$g3, tconstpool:$g2,
tconstpool:$g1, tconstpool:$g0),
(MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g3, 48),
tconstpool:$g2, 32),
tconstpool:$g1, 16),
tconstpool:$g0, 0)>;
def : Pat<(ARM64WrapperLarge tjumptable:$g3, tjumptable:$g2,
tjumptable:$g1, tjumptable:$g0),
(MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g3, 48),
tjumptable:$g2, 32),
tjumptable:$g1, 16),
tjumptable:$g0, 0)>;
//===----------------------------------------------------------------------===//
// Arithmetic instructions.
//===----------------------------------------------------------------------===//
// Add/subtract with carry.
defm ADC : AddSubCarry<0, "adc", "adcs", ARM64adc, ARM64adc_flag>;
defm SBC : AddSubCarry<1, "sbc", "sbcs", ARM64sbc, ARM64sbc_flag>;
def : InstAlias<"ngc $dst, $src", (SBCWr GPR32:$dst, WZR, GPR32:$src)>;
def : InstAlias<"ngc $dst, $src", (SBCXr GPR64:$dst, XZR, GPR64:$src)>;
def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>;
def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>;
// Add/subtract
defm ADD : AddSub<0, "add", add>;
defm SUB : AddSub<1, "sub">;
defm ADDS : AddSubS<0, "adds", ARM64add_flag, "cmn">;
defm SUBS : AddSubS<1, "subs", ARM64sub_flag, "cmp">;
// Use SUBS instead of SUB to enable CSE between SUBS and SUB.
def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm),
(SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>;
def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm),
(SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>;
def : Pat<(sub GPR32:$Rn, GPR32:$Rm),
(SUBSWrr GPR32:$Rn, GPR32:$Rm)>;
def : Pat<(sub GPR64:$Rn, GPR64:$Rm),
(SUBSXrr GPR64:$Rn, GPR64:$Rm)>;
def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm),
(SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>;
def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm),
(SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>;
def : Pat<(sub GPR32sp:$R2, arith_extended_reg32<i32>:$R3),
(SUBSWrx GPR32sp:$R2, arith_extended_reg32<i32>:$R3)>;
def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3),
(SUBSXrx GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3)>;
// Because of the immediate format for add/sub-imm instructions, the
// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
// These patterns capture that transformation.
let AddedComplexity = 1 in {
def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
(SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
(SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
(ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
(ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
}
def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0)>;
def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0)>;
def : InstAlias<"neg $dst, $src, $shift",
(SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift:$shift)>;
def : InstAlias<"neg $dst, $src, $shift",
(SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift:$shift)>;
// Because of the immediate format for add/sub-imm instructions, the
// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
// These patterns capture that transformation.
let AddedComplexity = 1 in {
def : Pat<(ARM64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
(SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
def : Pat<(ARM64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
(SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
def : Pat<(ARM64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
(ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
def : Pat<(ARM64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
(ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
}
def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0)>;
def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0)>;
def : InstAlias<"negs $dst, $src, $shift",
(SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift:$shift)>;
def : InstAlias<"negs $dst, $src, $shift",
(SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift:$shift)>;
// Unsigned/Signed divide
defm UDIV : Div<0, "udiv", udiv>;
defm SDIV : Div<1, "sdiv", sdiv>;
let isCodeGenOnly = 1 in {
defm UDIV_Int : Div<0, "udiv", int_arm64_udiv>;
defm SDIV_Int : Div<1, "sdiv", int_arm64_sdiv>;
}
// Variable shift
defm ASRV : Shift<0b10, "asr", sra>;
defm LSLV : Shift<0b00, "lsl", shl>;
defm LSRV : Shift<0b01, "lsr", srl>;
defm RORV : Shift<0b11, "ror", rotr>;
def : ShiftAlias<"asrv", ASRVWr, GPR32>;
def : ShiftAlias<"asrv", ASRVXr, GPR64>;
def : ShiftAlias<"lslv", LSLVWr, GPR32>;
def : ShiftAlias<"lslv", LSLVXr, GPR64>;
def : ShiftAlias<"lsrv", LSRVWr, GPR32>;
def : ShiftAlias<"lsrv", LSRVXr, GPR64>;
def : ShiftAlias<"rorv", RORVWr, GPR32>;
def : ShiftAlias<"rorv", RORVXr, GPR64>;
// Multiply-add
let AddedComplexity = 7 in {
defm MADD : MulAccum<0, "madd", add>;
defm MSUB : MulAccum<1, "msub", sub>;
def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)),
(MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)),
(MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))),
(MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))),
(MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
} // AddedComplexity = 7
let AddedComplexity = 5 in {
def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>;
def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>;
def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>;
def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>;
def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))),
(SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))),
(UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))),
(SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))),
(UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
} // AddedComplexity = 5
def : MulAccumWAlias<"mul", MADDWrrr>;
def : MulAccumXAlias<"mul", MADDXrrr>;
def : MulAccumWAlias<"mneg", MSUBWrrr>;
def : MulAccumXAlias<"mneg", MSUBXrrr>;
def : WideMulAccumAlias<"smull", SMADDLrrr>;
def : WideMulAccumAlias<"smnegl", SMSUBLrrr>;
def : WideMulAccumAlias<"umull", UMADDLrrr>;
def : WideMulAccumAlias<"umnegl", UMSUBLrrr>;
// Multiply-high
def SMULHrr : MulHi<0b010, "smulh", mulhs>;
def UMULHrr : MulHi<0b110, "umulh", mulhu>;
// CRC32
def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_arm64_crc32b, "crc32b">;
def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_arm64_crc32h, "crc32h">;
def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_arm64_crc32w, "crc32w">;
def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_arm64_crc32x, "crc32x">;
def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_arm64_crc32cb, "crc32cb">;
def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_arm64_crc32ch, "crc32ch">;
def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_arm64_crc32cw, "crc32cw">;
def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_arm64_crc32cx, "crc32cx">;
//===----------------------------------------------------------------------===//
// Logical instructions.
//===----------------------------------------------------------------------===//
// (immediate)
defm ANDS : LogicalImmS<0b11, "ands", ARM64and_flag>;
defm AND : LogicalImm<0b00, "and", and>;
defm EOR : LogicalImm<0b10, "eor", xor>;
defm ORR : LogicalImm<0b01, "orr", or>;
def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR,
logical_imm32:$imm)>;
def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR,
logical_imm64:$imm)>;
// (register)
defm ANDS : LogicalRegS<0b11, 0, "ands", ARM64and_flag>;
defm BICS : LogicalRegS<0b11, 1, "bics",
BinOpFrag<(ARM64and_flag node:$LHS, (not node:$RHS))>>;
defm AND : LogicalReg<0b00, 0, "and", and>;
defm BIC : LogicalReg<0b00, 1, "bic",
BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
defm EON : LogicalReg<0b10, 1, "eon",
BinOpFrag<(xor node:$LHS, (not node:$RHS))>>;
defm EOR : LogicalReg<0b10, 0, "eor", xor>;
defm ORN : LogicalReg<0b01, 1, "orn",
BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
defm ORR : LogicalReg<0b01, 0, "orr", or>;
def : InstAlias<"tst $src1, $src2",
(ANDSWri WZR, GPR32:$src1, logical_imm32:$src2)>;
def : InstAlias<"tst $src1, $src2",
(ANDSXri XZR, GPR64:$src1, logical_imm64:$src2)>;
def : InstAlias<"tst $src1, $src2",
(ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0)>;
def : InstAlias<"tst $src1, $src2",
(ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0)>;
def : InstAlias<"tst $src1, $src2, $sh",
(ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift:$sh)>;
def : InstAlias<"tst $src1, $src2, $sh",
(ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift:$sh)>;
def : InstAlias<"mvn $Wd, $Wm",
(ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0)>;
def : InstAlias<"mvn $Xd, $Xm",
(ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0)>;
def : InstAlias<"mvn $Wd, $Wm, $sh",
(ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift:$sh)>;
def : InstAlias<"mvn $Xd, $Xm, $sh",
(ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift:$sh)>;
def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>;
def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>;
//===----------------------------------------------------------------------===//
// One operand data processing instructions.
//===----------------------------------------------------------------------===//
defm CLS : OneOperandData<0b101, "cls">;
defm CLZ : OneOperandData<0b100, "clz", ctlz>;
defm RBIT : OneOperandData<0b000, "rbit">;
def REV16Wr : OneWRegData<0b001, "rev16",
UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>;
def REV16Xr : OneXRegData<0b001, "rev16", null_frag>;
def : Pat<(cttz GPR32:$Rn),
(CLZWr (RBITWr GPR32:$Rn))>;
def : Pat<(cttz GPR64:$Rn),
(CLZXr (RBITXr GPR64:$Rn))>;
def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)),
(i32 1))),
(CLSWr GPR32:$Rn)>;
def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)),
(i64 1))),
(CLSXr GPR64:$Rn)>;
// Unlike the other one operand instructions, the instructions with the "rev"
// mnemonic do *not* just different in the size bit, but actually use different
// opcode bits for the different sizes.
def REVWr : OneWRegData<0b010, "rev", bswap>;
def REVXr : OneXRegData<0b011, "rev", bswap>;
def REV32Xr : OneXRegData<0b010, "rev32",
UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>;
// The bswap commutes with the rotr so we want a pattern for both possible
// orders.
def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>;
def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>;
//===----------------------------------------------------------------------===//
// Bitfield immediate extraction instruction.
//===----------------------------------------------------------------------===//
let neverHasSideEffects = 1 in
defm EXTR : ExtractImm<"extr">;
def : InstAlias<"ror $dst, $src, $shift",
(EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>;
def : InstAlias<"ror $dst, $src, $shift",
(EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>;
def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)),
(EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>;
def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)),
(EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>;
//===----------------------------------------------------------------------===//
// Other bitfield immediate instructions.
//===----------------------------------------------------------------------===//
let neverHasSideEffects = 1 in {
defm BFM : BitfieldImmWith2RegArgs<0b01, "bfm">;
defm SBFM : BitfieldImm<0b00, "sbfm">;
defm UBFM : BitfieldImm<0b10, "ubfm">;
}
def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = (32 - N->getZExtValue()) & 0x1f;
return CurDAG->getTargetConstant(enc, MVT::i64);
}]>;
def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = 31 - N->getZExtValue();
return CurDAG->getTargetConstant(enc, MVT::i64);
}]>;
// min(7, 31 - shift_amt)
def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = 31 - N->getZExtValue();
enc = enc > 7 ? 7 : enc;
return CurDAG->getTargetConstant(enc, MVT::i64);
}]>;
// min(15, 31 - shift_amt)
def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = 31 - N->getZExtValue();
enc = enc > 15 ? 15 : enc;
return CurDAG->getTargetConstant(enc, MVT::i64);
}]>;
def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = (64 - N->getZExtValue()) & 0x3f;
return CurDAG->getTargetConstant(enc, MVT::i64);
}]>;
def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = 63 - N->getZExtValue();
return CurDAG->getTargetConstant(enc, MVT::i64);
}]>;
// min(7, 63 - shift_amt)
def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = 63 - N->getZExtValue();
enc = enc > 7 ? 7 : enc;
return CurDAG->getTargetConstant(enc, MVT::i64);
}]>;
// min(15, 63 - shift_amt)
def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = 63 - N->getZExtValue();
enc = enc > 15 ? 15 : enc;
return CurDAG->getTargetConstant(enc, MVT::i64);
}]>;
// min(31, 63 - shift_amt)
def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = 63 - N->getZExtValue();
enc = enc > 31 ? 31 : enc;
return CurDAG->getTargetConstant(enc, MVT::i64);
}]>;
def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)),
(UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
(i64 (i32shift_b imm0_31:$imm)))>;
def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)),
(UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
(i64 (i64shift_b imm0_63:$imm)))>;
let AddedComplexity = 10 in {
def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)),
(SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)),
(SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
}
def : InstAlias<"asr $dst, $src, $shift",
(SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
def : InstAlias<"asr $dst, $src, $shift",
(SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)),
(UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)),
(UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
def : InstAlias<"lsr $dst, $src, $shift",
(UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
def : InstAlias<"lsr $dst, $src, $shift",
(UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
//===----------------------------------------------------------------------===//
// Conditionally set flags instructions.
//===----------------------------------------------------------------------===//
defm CCMN : CondSetFlagsImm<0, "ccmn">;
defm CCMP : CondSetFlagsImm<1, "ccmp">;
defm CCMN : CondSetFlagsReg<0, "ccmn">;
defm CCMP : CondSetFlagsReg<1, "ccmp">;
//===----------------------------------------------------------------------===//
// Conditional select instructions.
//===----------------------------------------------------------------------===//
defm CSEL : CondSelect<0, 0b00, "csel">;
def inc : PatFrag<(ops node:$in), (add node:$in, 1)>;
defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>;
defm CSINV : CondSelectOp<1, 0b00, "csinv", not>;
defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>;
def : Pat<(ARM64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
(CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
def : Pat<(ARM64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
(CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
def : Pat<(ARM64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
(CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
def : Pat<(ARM64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
(CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
def : Pat<(ARM64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
(CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
def : Pat<(ARM64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
(CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
def : Pat<(ARM64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV),
(CSINCWr WZR, WZR, (i32 imm:$cc))>;
def : Pat<(ARM64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV),
(CSINCXr XZR, XZR, (i32 imm:$cc))>;
def : Pat<(ARM64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV),
(CSINVWr WZR, WZR, (i32 imm:$cc))>;
def : Pat<(ARM64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV),
(CSINVXr XZR, XZR, (i32 imm:$cc))>;
// The inverse of the condition code from the alias instruction is what is used
// in the aliased instruction. The parser all ready inverts the condition code
// for these aliases.
// FIXME: Is this the correct way to handle these aliases?
def : InstAlias<"cset $dst, $cc", (CSINCWr GPR32:$dst, WZR, WZR, ccode:$cc)>;
def : InstAlias<"cset $dst, $cc", (CSINCXr GPR64:$dst, XZR, XZR, ccode:$cc)>;
def : InstAlias<"csetm $dst, $cc", (CSINVWr GPR32:$dst, WZR, WZR, ccode:$cc)>;
def : InstAlias<"csetm $dst, $cc", (CSINVXr GPR64:$dst, XZR, XZR, ccode:$cc)>;
def : InstAlias<"cinc $dst, $src, $cc",
(CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, ccode:$cc)>;
def : InstAlias<"cinc $dst, $src, $cc",
(CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, ccode:$cc)>;
def : InstAlias<"cinv $dst, $src, $cc",
(CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, ccode:$cc)>;
def : InstAlias<"cinv $dst, $src, $cc",
(CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, ccode:$cc)>;
def : InstAlias<"cneg $dst, $src, $cc",
(CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, ccode:$cc)>;
def : InstAlias<"cneg $dst, $src, $cc",
(CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, ccode:$cc)>;
//===----------------------------------------------------------------------===//
// PC-relative instructions.
//===----------------------------------------------------------------------===//
let isReMaterializable = 1 in {
let neverHasSideEffects = 1, mayStore = 0, mayLoad = 0 in {
def ADR : ADRI<0, "adr", adrlabel, []>;
} // neverHasSideEffects = 1
def ADRP : ADRI<1, "adrp", adrplabel,
[(set GPR64:$Xd, (ARM64adrp tglobaladdr:$label))]>;
} // isReMaterializable = 1
// page address of a constant pool entry, block address
def : Pat<(ARM64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>;
def : Pat<(ARM64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>;
//===----------------------------------------------------------------------===//
// Unconditional branch (register) instructions.
//===----------------------------------------------------------------------===//
let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
def RET : BranchReg<0b0010, "ret", []>;
def DRPS : SpecialReturn<0b0101, "drps">;
def ERET : SpecialReturn<0b0100, "eret">;
} // isReturn = 1, isTerminator = 1, isBarrier = 1
// Default to the LR register.
def : InstAlias<"ret", (RET LR)>;
let isCall = 1, Defs = [LR], Uses = [SP] in {
def BLR : BranchReg<0b0001, "blr", [(ARM64call GPR64:$Rn)]>;
} // isCall
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
def BR : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>;
} // isBranch, isTerminator, isBarrier, isIndirectBranch
// Create a separate pseudo-instruction for codegen to use so that we don't
// flag lr as used in every function. It'll be restored before the RET by the
// epilogue if it's legitimately used.
def RET_ReallyLR : Pseudo<(outs), (ins), [(ARM64retflag)]> {
let isTerminator = 1;
let isBarrier = 1;
let isReturn = 1;
}
// This is a directive-like pseudo-instruction. The purpose is to insert an
// R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction
// (which in the usual case is a BLR).
let hasSideEffects = 1 in
def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []> {
let AsmString = ".tlsdesccall $sym";
}
// Pseudo-instruction representing a BLR with attached TLSDESC relocation. It
// gets expanded to two MCInsts during lowering.
let isCall = 1, Defs = [LR] in
def TLSDESC_BLR
: Pseudo<(outs), (ins GPR64:$dest, i64imm:$sym),
[(ARM64tlsdesc_call GPR64:$dest, tglobaltlsaddr:$sym)]>;
def : Pat<(ARM64tlsdesc_call GPR64:$dest, texternalsym:$sym),
(TLSDESC_BLR GPR64:$dest, texternalsym:$sym)>;
//===----------------------------------------------------------------------===//
// Conditional branch (immediate) instruction.
//===----------------------------------------------------------------------===//
def Bcc : BranchCond;
//===----------------------------------------------------------------------===//
// Compare-and-branch instructions.
//===----------------------------------------------------------------------===//
defm CBZ : CmpBranch<0, "cbz", ARM64cbz>;
defm CBNZ : CmpBranch<1, "cbnz", ARM64cbnz>;
//===----------------------------------------------------------------------===//
// Test-bit-and-branch instructions.
//===----------------------------------------------------------------------===//
def TBZ : TestBranch<0, "tbz", ARM64tbz>;
def TBNZ : TestBranch<1, "tbnz", ARM64tbnz>;
//===----------------------------------------------------------------------===//
// Unconditional branch (immediate) instructions.
//===----------------------------------------------------------------------===//
let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
def B : BranchImm<0, "b", [(br bb:$addr)]>;
} // isBranch, isTerminator, isBarrier
let isCall = 1, Defs = [LR], Uses = [SP] in {
def BL : CallImm<1, "bl", [(ARM64call tglobaladdr:$addr)]>;
} // isCall
def : Pat<(ARM64call texternalsym:$func), (BL texternalsym:$func)>;
//===----------------------------------------------------------------------===//
// Exception generation instructions.
//===----------------------------------------------------------------------===//
def BRK : ExceptionGeneration<0b001, 0b00, "brk">;
def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">;
def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">;
def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">;
def HLT : ExceptionGeneration<0b010, 0b00, "hlt">;
def HVC : ExceptionGeneration<0b000, 0b10, "hvc">;
def SMC : ExceptionGeneration<0b000, 0b11, "smc">;
def SVC : ExceptionGeneration<0b000, 0b01, "svc">;
// DCPSn defaults to an immediate operand of zero if unspecified.
def : InstAlias<"dcps1", (DCPS1 0)>;
def : InstAlias<"dcps2", (DCPS2 0)>;
def : InstAlias<"dcps3", (DCPS3 0)>;
//===----------------------------------------------------------------------===//
// Load instructions.
//===----------------------------------------------------------------------===//
// Pair (indexed, offset)
def LDPWi : LoadPairOffset<0b00, 0, GPR32, am_indexed32simm7, "ldp">;
def LDPXi : LoadPairOffset<0b10, 0, GPR64, am_indexed64simm7, "ldp">;
def LDPSi : LoadPairOffset<0b00, 1, FPR32, am_indexed32simm7, "ldp">;
def LDPDi : LoadPairOffset<0b01, 1, FPR64, am_indexed64simm7, "ldp">;
def LDPQi : LoadPairOffset<0b10, 1, FPR128, am_indexed128simm7, "ldp">;
def LDPSWi : LoadPairOffset<0b01, 0, GPR64, am_indexed32simm7, "ldpsw">;
// Pair (pre-indexed)
def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32, am_indexed32simm7_wb, "ldp">;
def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64, am_indexed64simm7_wb, "ldp">;
def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32, am_indexed32simm7_wb, "ldp">;
def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64, am_indexed64simm7_wb, "ldp">;
def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128, am_indexed128simm7_wb, "ldp">;
def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64, am_indexed32simm7_wb, "ldpsw">;
// Pair (post-indexed)
def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32, simm7s4, "ldp">;
def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64, simm7s8, "ldp">;
def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32, simm7s4, "ldp">;
def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64, simm7s8, "ldp">;
def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128, simm7s16, "ldp">;
def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64, simm7s4, "ldpsw">;
// Pair (no allocate)
def LDNPWi : LoadPairNoAlloc<0b00, 0, GPR32, am_indexed32simm7, "ldnp">;
def LDNPXi : LoadPairNoAlloc<0b10, 0, GPR64, am_indexed64simm7, "ldnp">;
def LDNPSi : LoadPairNoAlloc<0b00, 1, FPR32, am_indexed32simm7, "ldnp">;
def LDNPDi : LoadPairNoAlloc<0b01, 1, FPR64, am_indexed64simm7, "ldnp">;
def LDNPQi : LoadPairNoAlloc<0b10, 1, FPR128, am_indexed128simm7, "ldnp">;
//---
// (register offset)
//---
let AddedComplexity = 10 in {
// Integer
def LDRBBro : Load8RO<0b00, 0, 0b01, GPR32, "ldrb",
[(set GPR32:$Rt, (zextloadi8 ro_indexed8:$addr))]>;
def LDRHHro : Load16RO<0b01, 0, 0b01, GPR32, "ldrh",
[(set GPR32:$Rt, (zextloadi16 ro_indexed16:$addr))]>;
def LDRWro : Load32RO<0b10, 0, 0b01, GPR32, "ldr",
[(set GPR32:$Rt, (load ro_indexed32:$addr))]>;
def LDRXro : Load64RO<0b11, 0, 0b01, GPR64, "ldr",
[(set GPR64:$Rt, (load ro_indexed64:$addr))]>;
// Floating-point
def LDRBro : Load8RO<0b00, 1, 0b01, FPR8, "ldr",
[(set FPR8:$Rt, (load ro_indexed8:$addr))]>;
def LDRHro : Load16RO<0b01, 1, 0b01, FPR16, "ldr",
[(set (f16 FPR16:$Rt), (load ro_indexed16:$addr))]>;
def LDRSro : Load32RO<0b10, 1, 0b01, FPR32, "ldr",
[(set (f32 FPR32:$Rt), (load ro_indexed32:$addr))]>;
def LDRDro : Load64RO<0b11, 1, 0b01, FPR64, "ldr",
[(set (f64 FPR64:$Rt), (load ro_indexed64:$addr))]>;
def LDRQro : Load128RO<0b00, 1, 0b11, FPR128, "ldr", []> {
let mayLoad = 1;
}
// For regular load, we do not have any alignment requirement.
// Thus, it is safe to directly map the vector loads with interesting
// addressing modes.
// FIXME: We could do the same for bitconvert to floating point vectors.
def : Pat <(v8i8 (scalar_to_vector (i32 (extloadi8 ro_indexed8:$addr)))),
(INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
(LDRBro ro_indexed8:$addr), bsub)>;
def : Pat <(v16i8 (scalar_to_vector (i32 (extloadi8 ro_indexed8:$addr)))),
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(LDRBro ro_indexed8:$addr), bsub)>;
def : Pat <(v4i16 (scalar_to_vector (i32 (extloadi16 ro_indexed16:$addr)))),
(INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
(LDRHro ro_indexed16:$addr), hsub)>;
def : Pat <(v8i16 (scalar_to_vector (i32 (extloadi16 ro_indexed16:$addr)))),
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
(LDRHro ro_indexed16:$addr), hsub)>;
def : Pat <(v2i32 (scalar_to_vector (i32 (load ro_indexed32:$addr)))),
(INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
(LDRSro ro_indexed32:$addr), ssub)>;
def : Pat <(v4i32 (scalar_to_vector (i32 (load ro_indexed32:$addr)))),
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
(LDRSro ro_indexed32:$addr), ssub)>;
def : Pat <(v1i64 (scalar_to_vector (i64 (load ro_indexed64:$addr)))),
(LDRDro ro_indexed64:$addr)>;
def : Pat <(v2i64 (scalar_to_vector (i64 (load ro_indexed64:$addr)))),
(INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
(LDRDro ro_indexed64:$addr), dsub)>;
// Match all load 64 bits width whose type is compatible with FPR64
let Predicates = [IsLE] in {
// We must do vector loads with LD1 in big-endian.
def : Pat<(v2f32 (load ro_indexed64:$addr)), (LDRDro ro_indexed64:$addr)>;
def : Pat<(v8i8 (load ro_indexed64:$addr)), (LDRDro ro_indexed64:$addr)>;
def : Pat<(v4i16 (load ro_indexed64:$addr)), (LDRDro ro_indexed64:$addr)>;
def : Pat<(v2i32 (load ro_indexed64:$addr)), (LDRDro ro_indexed64:$addr)>;
}
def : Pat<(v1f64 (load ro_indexed64:$addr)), (LDRDro ro_indexed64:$addr)>;
def : Pat<(v1i64 (load ro_indexed64:$addr)), (LDRDro ro_indexed64:$addr)>;
// Match all load 128 bits width whose type is compatible with FPR128
let Predicates = [IsLE] in {
// We must do vector loads with LD1 in big-endian.
def : Pat<(v4f32 (load ro_indexed128:$addr)), (LDRQro ro_indexed128:$addr)>;
def : Pat<(v2f64 (load ro_indexed128:$addr)), (LDRQro ro_indexed128:$addr)>;
def : Pat<(v16i8 (load ro_indexed128:$addr)), (LDRQro ro_indexed128:$addr)>;
def : Pat<(v8i16 (load ro_indexed128:$addr)), (LDRQro ro_indexed128:$addr)>;
def : Pat<(v4i32 (load ro_indexed128:$addr)), (LDRQro ro_indexed128:$addr)>;
def : Pat<(v2i64 (load ro_indexed128:$addr)), (LDRQro ro_indexed128:$addr)>;
}
def : Pat<(f128 (load ro_indexed128:$addr)), (LDRQro ro_indexed128:$addr)>;
// Load sign-extended half-word
def LDRSHWro : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh",
[(set GPR32:$Rt, (sextloadi16 ro_indexed16:$addr))]>;
def LDRSHXro : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh",
[(set GPR64:$Rt, (sextloadi16 ro_indexed16:$addr))]>;
// Load sign-extended byte
def LDRSBWro : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb",
[(set GPR32:$Rt, (sextloadi8 ro_indexed8:$addr))]>;
def LDRSBXro : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb",
[(set GPR64:$Rt, (sextloadi8 ro_indexed8:$addr))]>;
// Load sign-extended word
def LDRSWro : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw",
[(set GPR64:$Rt, (sextloadi32 ro_indexed32:$addr))]>;
// Pre-fetch.
def PRFMro : PrefetchRO<0b11, 0, 0b10, "prfm",
[(ARM64Prefetch imm:$Rt, ro_indexed64:$addr)]>;
// zextload -> i64
def : Pat<(i64 (zextloadi8 ro_indexed8:$addr)),
(SUBREG_TO_REG (i64 0), (LDRBBro ro_indexed8:$addr), sub_32)>;
def : Pat<(i64 (zextloadi16 ro_indexed16:$addr)),
(SUBREG_TO_REG (i64 0), (LDRHHro ro_indexed16:$addr), sub_32)>;
def : Pat<(i64 (zextloadi32 ro_indexed32:$addr)),
(SUBREG_TO_REG (i64 0), (LDRWro ro_indexed32:$addr), sub_32)>;
// zextloadi1 -> zextloadi8
def : Pat<(i32 (zextloadi1 ro_indexed8:$addr)), (LDRBBro ro_indexed8:$addr)>;
def : Pat<(i64 (zextloadi1 ro_indexed8:$addr)),
(SUBREG_TO_REG (i64 0), (LDRBBro ro_indexed8:$addr), sub_32)>;
// extload -> zextload
def : Pat<(i32 (extloadi16 ro_indexed16:$addr)), (LDRHHro ro_indexed16:$addr)>;
def : Pat<(i32 (extloadi8 ro_indexed8:$addr)), (LDRBBro ro_indexed8:$addr)>;
def : Pat<(i32 (extloadi1 ro_indexed8:$addr)), (LDRBBro ro_indexed8:$addr)>;
def : Pat<(i64 (extloadi32 ro_indexed32:$addr)),
(SUBREG_TO_REG (i64 0), (LDRWro ro_indexed32:$addr), sub_32)>;
def : Pat<(i64 (extloadi16 ro_indexed16:$addr)),
(SUBREG_TO_REG (i64 0), (LDRHHro ro_indexed16:$addr), sub_32)>;
def : Pat<(i64 (extloadi8 ro_indexed8:$addr)),
(SUBREG_TO_REG (i64 0), (LDRBBro ro_indexed8:$addr), sub_32)>;
def : Pat<(i64 (extloadi1 ro_indexed8:$addr)),
(SUBREG_TO_REG (i64 0), (LDRBBro ro_indexed8:$addr), sub_32)>;
} // AddedComplexity = 10
//---
// (unsigned immediate)
//---
def LDRXui : LoadUI<0b11, 0, 0b01, GPR64, am_indexed64, "ldr",
[(set GPR64:$Rt, (load am_indexed64:$addr))]>;
def LDRWui : LoadUI<0b10, 0, 0b01, GPR32, am_indexed32, "ldr",
[(set GPR32:$Rt, (load am_indexed32:$addr))]>;
def LDRBui : LoadUI<0b00, 1, 0b01, FPR8, am_indexed8, "ldr",
[(set FPR8:$Rt, (load am_indexed8:$addr))]>;
def LDRHui : LoadUI<0b01, 1, 0b01, FPR16, am_indexed16, "ldr",
[(set (f16 FPR16:$Rt), (load am_indexed16:$addr))]>;
def LDRSui : LoadUI<0b10, 1, 0b01, FPR32, am_indexed32, "ldr",
[(set (f32 FPR32:$Rt), (load am_indexed32:$addr))]>;
def LDRDui : LoadUI<0b11, 1, 0b01, FPR64, am_indexed64, "ldr",
[(set (f64 FPR64:$Rt), (load am_indexed64:$addr))]>;
def LDRQui : LoadUI<0b00, 1, 0b11, FPR128, am_indexed128, "ldr",
[(set (f128 FPR128:$Rt), (load am_indexed128:$addr))]>;
// For regular load, we do not have any alignment requirement.
// Thus, it is safe to directly map the vector loads with interesting
// addressing modes.
// FIXME: We could do the same for bitconvert to floating point vectors.
def : Pat <(v8i8 (scalar_to_vector (i32 (extloadi8 am_indexed8:$addr)))),
(INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
(LDRBui am_indexed8:$addr), bsub)>;
def : Pat <(v16i8 (scalar_to_vector (i32 (extloadi8 am_indexed8:$addr)))),
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(LDRBui am_indexed8:$addr), bsub)>;
def : Pat <(v4i16 (scalar_to_vector (i32 (extloadi16 am_indexed16:$addr)))),
(INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
(LDRHui am_indexed16:$addr), hsub)>;
def : Pat <(v8i16 (scalar_to_vector (i32 (extloadi16 am_indexed16:$addr)))),
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
(LDRHui am_indexed16:$addr), hsub)>;
def : Pat <(v2i32 (scalar_to_vector (i32 (load am_indexed32:$addr)))),
(INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
(LDRSui am_indexed32:$addr), ssub)>;
def : Pat <(v4i32 (scalar_to_vector (i32 (load am_indexed32:$addr)))),
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
(LDRSui am_indexed32:$addr), ssub)>;
def : Pat <(v1i64 (scalar_to_vector (i64 (load am_indexed64:$addr)))),
(LDRDui am_indexed64:$addr)>;
def : Pat <(v2i64 (scalar_to_vector (i64 (load am_indexed64:$addr)))),
(INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
(LDRDui am_indexed64:$addr), dsub)>;
// Match all load 64 bits width whose type is compatible with FPR64
let Predicates = [IsLE] in {
// We must use LD1 to perform vector loads in big-endian.
def : Pat<(v2f32 (load am_indexed64:$addr)), (LDRDui am_indexed64:$addr)>;
def : Pat<(v8i8 (load am_indexed64:$addr)), (LDRDui am_indexed64:$addr)>;
def : Pat<(v4i16 (load am_indexed64:$addr)), (LDRDui am_indexed64:$addr)>;
def : Pat<(v2i32 (load am_indexed64:$addr)), (LDRDui am_indexed64:$addr)>;
}
def : Pat<(v1f64 (load am_indexed64:$addr)), (LDRDui am_indexed64:$addr)>;
def : Pat<(v1i64 (load am_indexed64:$addr)), (LDRDui am_indexed64:$addr)>;
// Match all load 128 bits width whose type is compatible with FPR128
let Predicates = [IsLE] in {
// We must use LD1 to perform vector loads in big-endian.
def : Pat<(v4f32 (load am_indexed128:$addr)), (LDRQui am_indexed128:$addr)>;
def : Pat<(v2f64 (load am_indexed128:$addr)), (LDRQui am_indexed128:$addr)>;
def : Pat<(v16i8 (load am_indexed128:$addr)), (LDRQui am_indexed128:$addr)>;
def : Pat<(v8i16 (load am_indexed128:$addr)), (LDRQui am_indexed128:$addr)>;
def : Pat<(v4i32 (load am_indexed128:$addr)), (LDRQui am_indexed128:$addr)>;
def : Pat<(v2i64 (load am_indexed128:$addr)), (LDRQui am_indexed128:$addr)>;
}
def : Pat<(f128 (load am_indexed128:$addr)), (LDRQui am_indexed128:$addr)>;
def LDRHHui : LoadUI<0b01, 0, 0b01, GPR32, am_indexed16, "ldrh",
[(set GPR32:$Rt, (zextloadi16 am_indexed16:$addr))]>;
def LDRBBui : LoadUI<0b00, 0, 0b01, GPR32, am_indexed8, "ldrb",
[(set GPR32:$Rt, (zextloadi8 am_indexed8:$addr))]>;
// zextload -> i64
def : Pat<(i64 (zextloadi8 am_indexed8:$addr)),
(SUBREG_TO_REG (i64 0), (LDRBBui am_indexed8:$addr), sub_32)>;
def : Pat<(i64 (zextloadi16 am_indexed16:$addr)),
(SUBREG_TO_REG (i64 0), (LDRHHui am_indexed16:$addr), sub_32)>;
// zextloadi1 -> zextloadi8
def : Pat<(i32 (zextloadi1 am_indexed8:$addr)), (LDRBBui am_indexed8:$addr)>;
def : Pat<(i64 (zextloadi1 am_indexed8:$addr)),
(SUBREG_TO_REG (i64 0), (LDRBBui am_indexed8:$addr), sub_32)>;
// extload -> zextload
def : Pat<(i32 (extloadi16 am_indexed16:$addr)), (LDRHHui am_indexed16:$addr)>;
def : Pat<(i32 (extloadi8 am_indexed8:$addr)), (LDRBBui am_indexed8:$addr)>;
def : Pat<(i32 (extloadi1 am_indexed8:$addr)), (LDRBBui am_indexed8:$addr)>;
def : Pat<(i64 (extloadi32 am_indexed32:$addr)),
(SUBREG_TO_REG (i64 0), (LDRWui am_indexed32:$addr), sub_32)>;
def : Pat<(i64 (extloadi16 am_indexed16:$addr)),
(SUBREG_TO_REG (i64 0), (LDRHHui am_indexed16:$addr), sub_32)>;
def : Pat<(i64 (extloadi8 am_indexed8:$addr)),
(SUBREG_TO_REG (i64 0), (LDRBBui am_indexed8:$addr), sub_32)>;
def : Pat<(i64 (extloadi1 am_indexed8:$addr)),
(SUBREG_TO_REG (i64 0), (LDRBBui am_indexed8:$addr), sub_32)>;
// load sign-extended half-word
def LDRSHWui : LoadUI<0b01, 0, 0b11, GPR32, am_indexed16, "ldrsh",
[(set GPR32:$Rt, (sextloadi16 am_indexed16:$addr))]>;
def LDRSHXui : LoadUI<0b01, 0, 0b10, GPR64, am_indexed16, "ldrsh",
[(set GPR64:$Rt, (sextloadi16 am_indexed16:$addr))]>;
// load sign-extended byte
def LDRSBWui : LoadUI<0b00, 0, 0b11, GPR32, am_indexed8, "ldrsb",
[(set GPR32:$Rt, (sextloadi8 am_indexed8:$addr))]>;
def LDRSBXui : LoadUI<0b00, 0, 0b10, GPR64, am_indexed8, "ldrsb",
[(set GPR64:$Rt, (sextloadi8 am_indexed8:$addr))]>;
// load sign-extended word
def LDRSWui : LoadUI<0b10, 0, 0b10, GPR64, am_indexed32, "ldrsw",
[(set GPR64:$Rt, (sextloadi32 am_indexed32:$addr))]>;
// load zero-extended word
def : Pat<(i64 (zextloadi32 am_indexed32:$addr)),
(SUBREG_TO_REG (i64 0), (LDRWui am_indexed32:$addr), sub_32)>;
// Pre-fetch.
def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm",
[(ARM64Prefetch imm:$Rt, am_indexed64:$addr)]>;
//---
// (literal)
def LDRWl : LoadLiteral<0b00, 0, GPR32, "ldr">;
def LDRXl : LoadLiteral<0b01, 0, GPR64, "ldr">;
def LDRSl : LoadLiteral<0b00, 1, FPR32, "ldr">;
def LDRDl : LoadLiteral<0b01, 1, FPR64, "ldr">;
def LDRQl : LoadLiteral<0b10, 1, FPR128, "ldr">;
// load sign-extended word
def LDRSWl : LoadLiteral<0b10, 0, GPR64, "ldrsw">;
// prefetch
def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>;
// [(ARM64Prefetch imm:$Rt, tglobaladdr:$label)]>;
//---
// (unscaled immediate)
def LDURXi : LoadUnscaled<0b11, 0, 0b01, GPR64, am_unscaled64, "ldur",
[(set GPR64:$Rt, (load am_unscaled64:$addr))]>;
def LDURWi : LoadUnscaled<0b10, 0, 0b01, GPR32, am_unscaled32, "ldur",
[(set GPR32:$Rt, (load am_unscaled32:$addr))]>;
def LDURBi : LoadUnscaled<0b00, 1, 0b01, FPR8, am_unscaled8, "ldur",
[(set FPR8:$Rt, (load am_unscaled8:$addr))]>;
def LDURHi : LoadUnscaled<0b01, 1, 0b01, FPR16, am_unscaled16, "ldur",
[(set (f16 FPR16:$Rt), (load am_unscaled16:$addr))]>;
def LDURSi : LoadUnscaled<0b10, 1, 0b01, FPR32, am_unscaled32, "ldur",
[(set (f32 FPR32:$Rt), (load am_unscaled32:$addr))]>;
def LDURDi : LoadUnscaled<0b11, 1, 0b01, FPR64, am_unscaled64, "ldur",
[(set (f64 FPR64:$Rt), (load am_unscaled64:$addr))]>;
def LDURQi : LoadUnscaled<0b00, 1, 0b11, FPR128, am_unscaled128, "ldur",
[(set (f128 FPR128:$Rt), (load am_unscaled128:$addr))]>;
def LDURHHi
: LoadUnscaled<0b01, 0, 0b01, GPR32, am_unscaled16, "ldurh",
[(set GPR32:$Rt, (zextloadi16 am_unscaled16:$addr))]>;
def LDURBBi
: LoadUnscaled<0b00, 0, 0b01, GPR32, am_unscaled8, "ldurb",
[(set GPR32:$Rt, (zextloadi8 am_unscaled8:$addr))]>;
// Match all load 64 bits width whose type is compatible with FPR64
let Predicates = [IsLE] in {
def : Pat<(v2f32 (load am_unscaled64:$addr)), (LDURDi am_unscaled64:$addr)>;
def : Pat<(v8i8 (load am_unscaled64:$addr)), (LDURDi am_unscaled64:$addr)>;
def : Pat<(v4i16 (load am_unscaled64:$addr)), (LDURDi am_unscaled64:$addr)>;
def : Pat<(v2i32 (load am_unscaled64:$addr)), (LDURDi am_unscaled64:$addr)>;
}
def : Pat<(v1f64 (load am_unscaled64:$addr)), (LDURDi am_unscaled64:$addr)>;
def : Pat<(v1i64 (load am_unscaled64:$addr)), (LDURDi am_unscaled64:$addr)>;
// Match all load 128 bits width whose type is compatible with FPR128
let Predicates = [IsLE] in {
def : Pat<(v4f32 (load am_unscaled128:$addr)), (LDURQi am_unscaled128:$addr)>;
def : Pat<(v2f64 (load am_unscaled128:$addr)), (LDURQi am_unscaled128:$addr)>;
def : Pat<(v16i8 (load am_unscaled128:$addr)), (LDURQi am_unscaled128:$addr)>;
def : Pat<(v8i16 (load am_unscaled128:$addr)), (LDURQi am_unscaled128:$addr)>;
def : Pat<(v4i32 (load am_unscaled128:$addr)), (LDURQi am_unscaled128:$addr)>;
def : Pat<(v2i64 (load am_unscaled128:$addr)), (LDURQi am_unscaled128:$addr)>;
def : Pat<(v2f64 (load am_unscaled128:$addr)), (LDURQi am_unscaled128:$addr)>;
}
// anyext -> zext
def : Pat<(i32 (extloadi16 am_unscaled16:$addr)), (LDURHHi am_unscaled16:$addr)>;
def : Pat<(i32 (extloadi8 am_unscaled8:$addr)), (LDURBBi am_unscaled8:$addr)>;
def : Pat<(i32 (extloadi1 am_unscaled8:$addr)), (LDURBBi am_unscaled8:$addr)>;
def : Pat<(i64 (extloadi32 am_unscaled32:$addr)),
(SUBREG_TO_REG (i64 0), (LDURWi am_unscaled32:$addr), sub_32)>;
def : Pat<(i64 (extloadi16 am_unscaled16:$addr)),
(SUBREG_TO_REG (i64 0), (LDURHHi am_unscaled16:$addr), sub_32)>;
def : Pat<(i64 (extloadi8 am_unscaled8:$addr)),
(SUBREG_TO_REG (i64 0), (LDURBBi am_unscaled8:$addr), sub_32)>;
def : Pat<(i64 (extloadi1 am_unscaled8:$addr)),
(SUBREG_TO_REG (i64 0), (LDURBBi am_unscaled8:$addr), sub_32)>;
// unscaled zext
def : Pat<(i32 (zextloadi16 am_unscaled16:$addr)),
(LDURHHi am_unscaled16:$addr)>;
def : Pat<(i32 (zextloadi8 am_unscaled8:$addr)),
(LDURBBi am_unscaled8:$addr)>;
def : Pat<(i32 (zextloadi1 am_unscaled8:$addr)),
(LDURBBi am_unscaled8:$addr)>;
def : Pat<(i64 (zextloadi32 am_unscaled32:$addr)),
(SUBREG_TO_REG (i64 0), (LDURWi am_unscaled32:$addr), sub_32)>;
def : Pat<(i64 (zextloadi16 am_unscaled16:$addr)),
(SUBREG_TO_REG (i64 0), (LDURHHi am_unscaled16:$addr), sub_32)>;
def : Pat<(i64 (zextloadi8 am_unscaled8:$addr)),
(SUBREG_TO_REG (i64 0), (LDURBBi am_unscaled8:$addr), sub_32)>;
def : Pat<(i64 (zextloadi1 am_unscaled8:$addr)),
(SUBREG_TO_REG (i64 0), (LDURBBi am_unscaled8:$addr), sub_32)>;
//---
// LDR mnemonics fall back to LDUR for negative or unaligned offsets.
// Define new assembler match classes as we want to only match these when
// the don't otherwise match the scaled addressing mode for LDR/STR. Don't
// associate a DiagnosticType either, as we want the diagnostic for the
// canonical form (the scaled operand) to take precedence.
def MemoryUnscaledFB8Operand : AsmOperandClass {
let Name = "MemoryUnscaledFB8";
let RenderMethod = "addMemoryUnscaledOperands";
}
def MemoryUnscaledFB16Operand : AsmOperandClass {
let Name = "MemoryUnscaledFB16";
let RenderMethod = "addMemoryUnscaledOperands";
}
def MemoryUnscaledFB32Operand : AsmOperandClass {
let Name = "MemoryUnscaledFB32";
let RenderMethod = "addMemoryUnscaledOperands";
}
def MemoryUnscaledFB64Operand : AsmOperandClass {
let Name = "MemoryUnscaledFB64";
let RenderMethod = "addMemoryUnscaledOperands";
}
def MemoryUnscaledFB128Operand : AsmOperandClass {
let Name = "MemoryUnscaledFB128";
let RenderMethod = "addMemoryUnscaledOperands";
}
def am_unscaled_fb8 : Operand<i64> {
let ParserMatchClass = MemoryUnscaledFB8Operand;
let MIOperandInfo = (ops GPR64sp:$base, i64imm:$offset);
}
def am_unscaled_fb16 : Operand<i64> {
let ParserMatchClass = MemoryUnscaledFB16Operand;
let MIOperandInfo = (ops GPR64sp:$base, i64imm:$offset);
}
def am_unscaled_fb32 : Operand<i64> {
let ParserMatchClass = MemoryUnscaledFB32Operand;
let MIOperandInfo = (ops GPR64sp:$base, i64imm:$offset);
}
def am_unscaled_fb64 : Operand<i64> {
let ParserMatchClass = MemoryUnscaledFB64Operand;
let MIOperandInfo = (ops GPR64sp:$base, i64imm:$offset);
}
def am_unscaled_fb128 : Operand<i64> {
let ParserMatchClass = MemoryUnscaledFB128Operand;
let MIOperandInfo = (ops GPR64sp:$base, i64imm:$offset);
}
def : InstAlias<"ldr $Rt, $addr", (LDURXi GPR64:$Rt, am_unscaled_fb64:$addr)>;
def : InstAlias<"ldr $Rt, $addr", (LDURWi GPR32:$Rt, am_unscaled_fb32:$addr)>;
def : InstAlias<"ldr $Rt, $addr", (LDURBi FPR8:$Rt, am_unscaled_fb8:$addr)>;
def : InstAlias<"ldr $Rt, $addr", (LDURHi FPR16:$Rt, am_unscaled_fb16:$addr)>;
def : InstAlias<"ldr $Rt, $addr", (LDURSi FPR32:$Rt, am_unscaled_fb32:$addr)>;
def : InstAlias<"ldr $Rt, $addr", (LDURDi FPR64:$Rt, am_unscaled_fb64:$addr)>;
def : InstAlias<"ldr $Rt, $addr", (LDURQi FPR128:$Rt, am_unscaled_fb128:$addr)>;
// zextload -> i64
def : Pat<(i64 (zextloadi8 am_unscaled8:$addr)),
(SUBREG_TO_REG (i64 0), (LDURBBi am_unscaled8:$addr), sub_32)>;
def : Pat<(i64 (zextloadi16 am_unscaled16:$addr)),
(SUBREG_TO_REG (i64 0), (LDURHHi am_unscaled16:$addr), sub_32)>;
// load sign-extended half-word
def LDURSHWi
: LoadUnscaled<0b01, 0, 0b11, GPR32, am_unscaled16, "ldursh",
[(set GPR32:$Rt, (sextloadi16 am_unscaled16:$addr))]>;
def LDURSHXi
: LoadUnscaled<0b01, 0, 0b10, GPR64, am_unscaled16, "ldursh",
[(set GPR64:$Rt, (sextloadi16 am_unscaled16:$addr))]>;
// load sign-extended byte
def LDURSBWi
: LoadUnscaled<0b00, 0, 0b11, GPR32, am_unscaled8, "ldursb",
[(set GPR32:$Rt, (sextloadi8 am_unscaled8:$addr))]>;
def LDURSBXi
: LoadUnscaled<0b00, 0, 0b10, GPR64, am_unscaled8, "ldursb",
[(set GPR64:$Rt, (sextloadi8 am_unscaled8:$addr))]>;
// load sign-extended word
def LDURSWi
: LoadUnscaled<0b10, 0, 0b10, GPR64, am_unscaled32, "ldursw",
[(set GPR64:$Rt, (sextloadi32 am_unscaled32:$addr))]>;
// zero and sign extending aliases from generic LDR* mnemonics to LDUR*.
def : InstAlias<"ldrb $Rt, $addr", (LDURBBi GPR32:$Rt, am_unscaled_fb8:$addr)>;
def : InstAlias<"ldrh $Rt, $addr", (LDURHHi GPR32:$Rt, am_unscaled_fb16:$addr)>;
def : InstAlias<"ldrsb $Rt, $addr", (LDURSBWi GPR32:$Rt, am_unscaled_fb8:$addr)>;
def : InstAlias<"ldrsb $Rt, $addr", (LDURSBXi GPR64:$Rt, am_unscaled_fb8:$addr)>;
def : InstAlias<"ldrsh $Rt, $addr", (LDURSHWi GPR32:$Rt, am_unscaled_fb16:$addr)>;
def : InstAlias<"ldrsh $Rt, $addr", (LDURSHXi GPR64:$Rt, am_unscaled_fb16:$addr)>;
def : InstAlias<"ldrsw $Rt, $addr", (LDURSWi GPR64:$Rt, am_unscaled_fb32:$addr)>;
// Pre-fetch.
def PRFUMi : PrefetchUnscaled<0b11, 0, 0b10, "prfum",
[(ARM64Prefetch imm:$Rt, am_unscaled64:$addr)]>;
//---
// (unscaled immediate, unprivileged)
def LDTRXi : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">;
def LDTRWi : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">;
def LDTRHi : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">;
def LDTRBi : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">;
// load sign-extended half-word
def LDTRSHWi : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">;
def LDTRSHXi : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">;
// load sign-extended byte
def LDTRSBWi : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">;
def LDTRSBXi : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">;
// load sign-extended word
def LDTRSWi : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">;
//---
// (immediate pre-indexed)
def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32, "ldr">;
def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64, "ldr">;
def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8, "ldr">;
def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16, "ldr">;
def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32, "ldr">;
def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64, "ldr">;
def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128, "ldr">;
// load sign-extended half-word
def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32, "ldrsh">;
def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64, "ldrsh">;
// load sign-extended byte
def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32, "ldrsb">;
def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64, "ldrsb">;
// load zero-extended byte
def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32, "ldrb">;
def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32, "ldrh">;
// load sign-extended word
def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64, "ldrsw">;
// ISel pseudos and patterns. See expanded comment on LoadPreIdxPseudo.
def LDRQpre_isel : LoadPreIdxPseudo<FPR128>;
def LDRDpre_isel : LoadPreIdxPseudo<FPR64>;
def LDRSpre_isel : LoadPreIdxPseudo<FPR32>;
def LDRXpre_isel : LoadPreIdxPseudo<GPR64>;
def LDRWpre_isel : LoadPreIdxPseudo<GPR32>;
def LDRHHpre_isel : LoadPreIdxPseudo<GPR32>;
def LDRBBpre_isel : LoadPreIdxPseudo<GPR32>;
def LDRSWpre_isel : LoadPreIdxPseudo<GPR64>;
def LDRSHWpre_isel : LoadPreIdxPseudo<GPR32>;
def LDRSHXpre_isel : LoadPreIdxPseudo<GPR64>;
def LDRSBWpre_isel : LoadPreIdxPseudo<GPR32>;
def LDRSBXpre_isel : LoadPreIdxPseudo<GPR64>;
//---
// (immediate post-indexed)
def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32, "ldr">;
def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64, "ldr">;
def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8, "ldr">;
def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16, "ldr">;
def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32, "ldr">;
def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64, "ldr">;
def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128, "ldr">;
// load sign-extended half-word
def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32, "ldrsh">;
def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64, "ldrsh">;
// load sign-extended byte
def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32, "ldrsb">;
def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64, "ldrsb">;
// load zero-extended byte
def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32, "ldrb">;
def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32, "ldrh">;
// load sign-extended word
def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64, "ldrsw">;
// ISel pseudos and patterns. See expanded comment on LoadPostIdxPseudo.
def LDRQpost_isel : LoadPostIdxPseudo<FPR128>;
def LDRDpost_isel : LoadPostIdxPseudo<FPR64>;
def LDRSpost_isel : LoadPostIdxPseudo<FPR32>;
def LDRXpost_isel : LoadPostIdxPseudo<GPR64>;
def LDRWpost_isel : LoadPostIdxPseudo<GPR32>;
def LDRHHpost_isel : LoadPostIdxPseudo<GPR32>;
def LDRBBpost_isel : LoadPostIdxPseudo<GPR32>;
def LDRSWpost_isel : LoadPostIdxPseudo<GPR64>;
def LDRSHWpost_isel : LoadPostIdxPseudo<GPR32>;
def LDRSHXpost_isel : LoadPostIdxPseudo<GPR64>;
def LDRSBWpost_isel : LoadPostIdxPseudo<GPR32>;
def LDRSBXpost_isel : LoadPostIdxPseudo<GPR64>;
//===----------------------------------------------------------------------===//
// Store instructions.
//===----------------------------------------------------------------------===//
// Pair (indexed, offset)
// FIXME: Use dedicated range-checked addressing mode operand here.
def STPWi : StorePairOffset<0b00, 0, GPR32, am_indexed32simm7, "stp">;
def STPXi : StorePairOffset<0b10, 0, GPR64, am_indexed64simm7, "stp">;
def STPSi : StorePairOffset<0b00, 1, FPR32, am_indexed32simm7, "stp">;
def STPDi : StorePairOffset<0b01, 1, FPR64, am_indexed64simm7, "stp">;
def STPQi : StorePairOffset<0b10, 1, FPR128, am_indexed128simm7, "stp">;
// Pair (pre-indexed)
def STPWpre : StorePairPreIdx<0b00, 0, GPR32, am_indexed32simm7_wb, "stp">;
def STPXpre : StorePairPreIdx<0b10, 0, GPR64, am_indexed64simm7_wb, "stp">;
def STPSpre : StorePairPreIdx<0b00, 1, FPR32, am_indexed32simm7_wb, "stp">;
def STPDpre : StorePairPreIdx<0b01, 1, FPR64, am_indexed64simm7_wb, "stp">;
def STPQpre : StorePairPreIdx<0b10, 1, FPR128, am_indexed128simm7_wb, "stp">;
// Pair (pre-indexed)
def STPWpost : StorePairPostIdx<0b00, 0, GPR32, simm7s4, "stp">;
def STPXpost : StorePairPostIdx<0b10, 0, GPR64, simm7s8, "stp">;
def STPSpost : StorePairPostIdx<0b00, 1, FPR32, simm7s4, "stp">;
def STPDpost : StorePairPostIdx<0b01, 1, FPR64, simm7s8, "stp">;
def STPQpost : StorePairPostIdx<0b10, 1, FPR128, simm7s16, "stp">;
// Pair (no allocate)
def STNPWi : StorePairNoAlloc<0b00, 0, GPR32, am_indexed32simm7, "stnp">;
def STNPXi : StorePairNoAlloc<0b10, 0, GPR64, am_indexed64simm7, "stnp">;
def STNPSi : StorePairNoAlloc<0b00, 1, FPR32, am_indexed32simm7, "stnp">;
def STNPDi : StorePairNoAlloc<0b01, 1, FPR64, am_indexed64simm7, "stnp">;
def STNPQi : StorePairNoAlloc<0b10, 1, FPR128, am_indexed128simm7, "stnp">;
//---
// (Register offset)
let AddedComplexity = 10 in {
// Integer
def STRHHro : Store16RO<0b01, 0, 0b00, GPR32, "strh",
[(truncstorei16 GPR32:$Rt, ro_indexed16:$addr)]>;
def STRBBro : Store8RO<0b00, 0, 0b00, GPR32, "strb",
[(truncstorei8 GPR32:$Rt, ro_indexed8:$addr)]>;
def STRWro : Store32RO<0b10, 0, 0b00, GPR32, "str",
[(store GPR32:$Rt, ro_indexed32:$addr)]>;
def STRXro : Store64RO<0b11, 0, 0b00, GPR64, "str",
[(store GPR64:$Rt, ro_indexed64:$addr)]>;
// truncstore i64
def : Pat<(truncstorei8 GPR64:$Rt, ro_indexed8:$addr),
(STRBBro (EXTRACT_SUBREG GPR64:$Rt, sub_32), ro_indexed8:$addr)>;
def : Pat<(truncstorei16 GPR64:$Rt, ro_indexed16:$addr),
(STRHHro (EXTRACT_SUBREG GPR64:$Rt, sub_32), ro_indexed16:$addr)>;
def : Pat<(truncstorei32 GPR64:$Rt, ro_indexed32:$addr),
(STRWro (EXTRACT_SUBREG GPR64:$Rt, sub_32), ro_indexed32:$addr)>;
// Floating-point
def STRBro : Store8RO<0b00, 1, 0b00, FPR8, "str",
[(store FPR8:$Rt, ro_indexed8:$addr)]>;
def STRHro : Store16RO<0b01, 1, 0b00, FPR16, "str",
[(store (f16 FPR16:$Rt), ro_indexed16:$addr)]>;
def STRSro : Store32RO<0b10, 1, 0b00, FPR32, "str",
[(store (f32 FPR32:$Rt), ro_indexed32:$addr)]>;
def STRDro : Store64RO<0b11, 1, 0b00, FPR64, "str",
[(store (f64 FPR64:$Rt), ro_indexed64:$addr)]>;
def STRQro : Store128RO<0b00, 1, 0b10, FPR128, "str", []> {
let mayStore = 1;
}
// Match all store 64 bits width whose type is compatible with FPR64
let Predicates = [IsLE] in {
// We must use ST1 to store vectors in big-endian.
def : Pat<(store (v2f32 FPR64:$Rn), ro_indexed64:$addr),
(STRDro FPR64:$Rn, ro_indexed64:$addr)>;
def : Pat<(store (v8i8 FPR64:$Rn), ro_indexed64:$addr),
(STRDro FPR64:$Rn, ro_indexed64:$addr)>;
def : Pat<(store (v4i16 FPR64:$Rn), ro_indexed64:$addr),
(STRDro FPR64:$Rn, ro_indexed64:$addr)>;
def : Pat<(store (v2i32 FPR64:$Rn), ro_indexed64:$addr),
(STRDro FPR64:$Rn, ro_indexed64:$addr)>;
}
def : Pat<(store (v1f64 FPR64:$Rn), ro_indexed64:$addr),
(STRDro FPR64:$Rn, ro_indexed64:$addr)>;
def : Pat<(store (v1i64 FPR64:$Rn), ro_indexed64:$addr),
(STRDro FPR64:$Rn, ro_indexed64:$addr)>;
// Match all store 128 bits width whose type is compatible with FPR128
let Predicates = [IsLE] in {
// We must use ST1 to store vectors in big-endian.
def : Pat<(store (v4f32 FPR128:$Rn), ro_indexed128:$addr),
(STRQro FPR128:$Rn, ro_indexed128:$addr)>;
def : Pat<(store (v2f64 FPR128:$Rn), ro_indexed128:$addr),
(STRQro FPR128:$Rn, ro_indexed128:$addr)>;
def : Pat<(store (v16i8 FPR128:$Rn), ro_indexed128:$addr),
(STRQro FPR128:$Rn, ro_indexed128:$addr)>;
def : Pat<(store (v8i16 FPR128:$Rn), ro_indexed128:$addr),
(STRQro FPR128:$Rn, ro_indexed128:$addr)>;
def : Pat<(store (v4i32 FPR128:$Rn), ro_indexed128:$addr),
(STRQro FPR128:$Rn, ro_indexed128:$addr)>;
def : Pat<(store (v2i64 FPR128:$Rn), ro_indexed128:$addr),
(STRQro FPR128:$Rn, ro_indexed128:$addr)>;
}
def : Pat<(store (f128 FPR128:$Rn), ro_indexed128:$addr),
(STRQro FPR128:$Rn, ro_indexed128:$addr)>;
//---
// (unsigned immediate)
def STRXui : StoreUI<0b11, 0, 0b00, GPR64, am_indexed64, "str",
[(store GPR64:$Rt, am_indexed64:$addr)]>;
def STRWui : StoreUI<0b10, 0, 0b00, GPR32, am_indexed32, "str",
[(store GPR32:$Rt, am_indexed32:$addr)]>;
def STRBui : StoreUI<0b00, 1, 0b00, FPR8, am_indexed8, "str",
[(store FPR8:$Rt, am_indexed8:$addr)]>;
def STRHui : StoreUI<0b01, 1, 0b00, FPR16, am_indexed16, "str",
[(store (f16 FPR16:$Rt), am_indexed16:$addr)]>;
def STRSui : StoreUI<0b10, 1, 0b00, FPR32, am_indexed32, "str",
[(store (f32 FPR32:$Rt), am_indexed32:$addr)]>;
def STRDui : StoreUI<0b11, 1, 0b00, FPR64, am_indexed64, "str",
[(store (f64 FPR64:$Rt), am_indexed64:$addr)]>;
def STRQui : StoreUI<0b00, 1, 0b10, FPR128, am_indexed128, "str", []> {
let mayStore = 1;
}
// Match all store 64 bits width whose type is compatible with FPR64
let Predicates = [IsLE] in {
// We must use ST1 to store vectors in big-endian.
def : Pat<(store (v2f32 FPR64:$Rn), am_indexed64:$addr),
(STRDui FPR64:$Rn, am_indexed64:$addr)>;
def : Pat<(store (v8i8 FPR64:$Rn), am_indexed64:$addr),
(STRDui FPR64:$Rn, am_indexed64:$addr)>;
def : Pat<(store (v4i16 FPR64:$Rn), am_indexed64:$addr),
(STRDui FPR64:$Rn, am_indexed64:$addr)>;
def : Pat<(store (v2i32 FPR64:$Rn), am_indexed64:$addr),
(STRDui FPR64:$Rn, am_indexed64:$addr)>;
}
def : Pat<(store (v1f64 FPR64:$Rn), am_indexed64:$addr),
(STRDui FPR64:$Rn, am_indexed64:$addr)>;
def : Pat<(store (v1i64 FPR64:$Rn), am_indexed64:$addr),
(STRDui FPR64:$Rn, am_indexed64:$addr)>;
// Match all store 128 bits width whose type is compatible with FPR128
let Predicates = [IsLE] in {
// We must use ST1 to store vectors in big-endian.
def : Pat<(store (v4f32 FPR128:$Rn), am_indexed128:$addr),
(STRQui FPR128:$Rn, am_indexed128:$addr)>;
def : Pat<(store (v2f64 FPR128:$Rn), am_indexed128:$addr),
(STRQui FPR128:$Rn, am_indexed128:$addr)>;
def : Pat<(store (v16i8 FPR128:$Rn), am_indexed128:$addr),
(STRQui FPR128:$Rn, am_indexed128:$addr)>;
def : Pat<(store (v8i16 FPR128:$Rn), am_indexed128:$addr),
(STRQui FPR128:$Rn, am_indexed128:$addr)>;
def : Pat<(store (v4i32 FPR128:$Rn), am_indexed128:$addr),
(STRQui FPR128:$Rn, am_indexed128:$addr)>;
def : Pat<(store (v2i64 FPR128:$Rn), am_indexed128:$addr),
(STRQui FPR128:$Rn, am_indexed128:$addr)>;
}
def : Pat<(store (f128 FPR128:$Rn), am_indexed128:$addr),
(STRQui FPR128:$Rn, am_indexed128:$addr)>;
def STRHHui : StoreUI<0b01, 0, 0b00, GPR32, am_indexed16, "strh",
[(truncstorei16 GPR32:$Rt, am_indexed16:$addr)]>;
def STRBBui : StoreUI<0b00, 0, 0b00, GPR32, am_indexed8, "strb",
[(truncstorei8 GPR32:$Rt, am_indexed8:$addr)]>;
// truncstore i64
def : Pat<(truncstorei32 GPR64:$Rt, am_indexed32:$addr),
(STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), am_indexed32:$addr)>;
def : Pat<(truncstorei16 GPR64:$Rt, am_indexed16:$addr),
(STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), am_indexed16:$addr)>;
def : Pat<(truncstorei8 GPR64:$Rt, am_indexed8:$addr),
(STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), am_indexed8:$addr)>;
} // AddedComplexity = 10
//---
// (unscaled immediate)
def STURXi : StoreUnscaled<0b11, 0, 0b00, GPR64, am_unscaled64, "stur",
[(store GPR64:$Rt, am_unscaled64:$addr)]>;
def STURWi : StoreUnscaled<0b10, 0, 0b00, GPR32, am_unscaled32, "stur",
[(store GPR32:$Rt, am_unscaled32:$addr)]>;
def STURBi : StoreUnscaled<0b00, 1, 0b00, FPR8, am_unscaled8, "stur",
[(store FPR8:$Rt, am_unscaled8:$addr)]>;
def STURHi : StoreUnscaled<0b01, 1, 0b00, FPR16, am_unscaled16, "stur",
[(store (f16 FPR16:$Rt), am_unscaled16:$addr)]>;
def STURSi : StoreUnscaled<0b10, 1, 0b00, FPR32, am_unscaled32, "stur",
[(store (f32 FPR32:$Rt), am_unscaled32:$addr)]>;
def STURDi : StoreUnscaled<0b11, 1, 0b00, FPR64, am_unscaled64, "stur",
[(store (f64 FPR64:$Rt), am_unscaled64:$addr)]>;
def STURQi : StoreUnscaled<0b00, 1, 0b10, FPR128, am_unscaled128, "stur",
[(store (f128 FPR128:$Rt), am_unscaled128:$addr)]>;
def STURHHi : StoreUnscaled<0b01, 0, 0b00, GPR32, am_unscaled16, "sturh",
[(truncstorei16 GPR32:$Rt, am_unscaled16:$addr)]>;
def STURBBi : StoreUnscaled<0b00, 0, 0b00, GPR32, am_unscaled8, "sturb",
[(truncstorei8 GPR32:$Rt, am_unscaled8:$addr)]>;
// Match all store 64 bits width whose type is compatible with FPR64
let Predicates = [IsLE] in {
// We must use ST1 to store vectors in big-endian.
def : Pat<(store (v2f32 FPR64:$Rn), am_unscaled64:$addr),
(STURDi FPR64:$Rn, am_unscaled64:$addr)>;
def : Pat<(store (v8i8 FPR64:$Rn), am_unscaled64:$addr),
(STURDi FPR64:$Rn, am_unscaled64:$addr)>;
def : Pat<(store (v4i16 FPR64:$Rn), am_unscaled64:$addr),
(STURDi FPR64:$Rn, am_unscaled64:$addr)>;
def : Pat<(store (v2i32 FPR64:$Rn), am_unscaled64:$addr),
(STURDi FPR64:$Rn, am_unscaled64:$addr)>;
}
def : Pat<(store (v1f64 FPR64:$Rn), am_unscaled64:$addr),
(STURDi FPR64:$Rn, am_unscaled64:$addr)>;
def : Pat<(store (v1i64 FPR64:$Rn), am_unscaled64:$addr),
(STURDi FPR64:$Rn, am_unscaled64:$addr)>;
// Match all store 128 bits width whose type is compatible with FPR128
let Predicates = [IsLE] in {
// We must use ST1 to store vectors in big-endian.
def : Pat<(store (v4f32 FPR128:$Rn), am_unscaled128:$addr),
(STURQi FPR128:$Rn, am_unscaled128:$addr)>;
def : Pat<(store (v2f64 FPR128:$Rn), am_unscaled128:$addr),
(STURQi FPR128:$Rn, am_unscaled128:$addr)>;
def : Pat<(store (v16i8 FPR128:$Rn), am_unscaled128:$addr),
(STURQi FPR128:$Rn, am_unscaled128:$addr)>;
def : Pat<(store (v8i16 FPR128:$Rn), am_unscaled128:$addr),
(STURQi FPR128:$Rn, am_unscaled128:$addr)>;
def : Pat<(store (v4i32 FPR128:$Rn), am_unscaled128:$addr),
(STURQi FPR128:$Rn, am_unscaled128:$addr)>;
def : Pat<(store (v2i64 FPR128:$Rn), am_unscaled128:$addr),
(STURQi FPR128:$Rn, am_unscaled128:$addr)>;
def : Pat<(store (v2f64 FPR128:$Rn), am_unscaled128:$addr),
(STURQi FPR128:$Rn, am_unscaled128:$addr)>;
}
// unscaled i64 truncating stores
def : Pat<(truncstorei32 GPR64:$Rt, am_unscaled32:$addr),
(STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), am_unscaled32:$addr)>;
def : Pat<(truncstorei16 GPR64:$Rt, am_unscaled16:$addr),
(STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), am_unscaled16:$addr)>;
def : Pat<(truncstorei8 GPR64:$Rt, am_unscaled8:$addr),
(STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), am_unscaled8:$addr)>;
//---
// STR mnemonics fall back to STUR for negative or unaligned offsets.
def : InstAlias<"str $Rt, $addr", (STURXi GPR64:$Rt, am_unscaled_fb64:$addr)>;
def : InstAlias<"str $Rt, $addr", (STURWi GPR32:$Rt, am_unscaled_fb32:$addr)>;
def : InstAlias<"str $Rt, $addr", (STURBi FPR8:$Rt, am_unscaled_fb8:$addr)>;
def : InstAlias<"str $Rt, $addr", (STURHi FPR16:$Rt, am_unscaled_fb16:$addr)>;
def : InstAlias<"str $Rt, $addr", (STURSi FPR32:$Rt, am_unscaled_fb32:$addr)>;
def : InstAlias<"str $Rt, $addr", (STURDi FPR64:$Rt, am_unscaled_fb64:$addr)>;
def : InstAlias<"str $Rt, $addr", (STURQi FPR128:$Rt, am_unscaled_fb128:$addr)>;
def : InstAlias<"strb $Rt, $addr", (STURBBi GPR32:$Rt, am_unscaled_fb8:$addr)>;
def : InstAlias<"strh $Rt, $addr", (STURHHi GPR32:$Rt, am_unscaled_fb16:$addr)>;
//---
// (unscaled immediate, unprivileged)
def STTRWi : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">;
def STTRXi : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">;
def STTRHi : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">;
def STTRBi : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">;
//---
// (immediate pre-indexed)
def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32, "str">;
def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64, "str">;
def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8, "str">;
def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16, "str">;
def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32, "str">;
def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64, "str">;
def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128, "str">;
def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32, "strb">;
def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32, "strh">;
// ISel pseudos and patterns. See expanded comment on StorePreIdxPseudo.
defm STRQpre : StorePreIdxPseudo<FPR128, f128, pre_store>;
defm STRDpre : StorePreIdxPseudo<FPR64, f64, pre_store>;
defm STRSpre : StorePreIdxPseudo<FPR32, f32, pre_store>;
defm STRXpre : StorePreIdxPseudo<GPR64, i64, pre_store>;
defm STRWpre : StorePreIdxPseudo<GPR32, i32, pre_store>;
defm STRHHpre : StorePreIdxPseudo<GPR32, i32, pre_truncsti16>;
defm STRBBpre : StorePreIdxPseudo<GPR32, i32, pre_truncsti8>;
// truncstore i64
def : Pat<(pre_truncsti32 GPR64:$Rt, am_noindex:$addr, simm9:$off),
(STRWpre_isel (EXTRACT_SUBREG GPR64:$Rt, sub_32), am_noindex:$addr,
simm9:$off)>;
def : Pat<(pre_truncsti16 GPR64:$Rt, am_noindex:$addr, simm9:$off),
(STRHHpre_isel (EXTRACT_SUBREG GPR64:$Rt, sub_32), am_noindex:$addr,
simm9:$off)>;
def : Pat<(pre_truncsti8 GPR64:$Rt, am_noindex:$addr, simm9:$off),
(STRBBpre_isel (EXTRACT_SUBREG GPR64:$Rt, sub_32), am_noindex:$addr,
simm9:$off)>;
def : Pat<(pre_store (v8i8 FPR64:$Rt), am_noindex:$addr, simm9:$off),
(STRDpre_isel FPR64:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(pre_store (v4i16 FPR64:$Rt), am_noindex:$addr, simm9:$off),
(STRDpre_isel FPR64:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(pre_store (v2i32 FPR64:$Rt), am_noindex:$addr, simm9:$off),
(STRDpre_isel FPR64:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(pre_store (v2f32 FPR64:$Rt), am_noindex:$addr, simm9:$off),
(STRDpre_isel FPR64:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(pre_store (v1i64 FPR64:$Rt), am_noindex:$addr, simm9:$off),
(STRDpre_isel FPR64:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(pre_store (v1f64 FPR64:$Rt), am_noindex:$addr, simm9:$off),
(STRDpre_isel FPR64:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(pre_store (v16i8 FPR128:$Rt), am_noindex:$addr, simm9:$off),
(STRQpre_isel FPR128:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(pre_store (v8i16 FPR128:$Rt), am_noindex:$addr, simm9:$off),
(STRQpre_isel FPR128:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(pre_store (v4i32 FPR128:$Rt), am_noindex:$addr, simm9:$off),
(STRQpre_isel FPR128:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(pre_store (v4f32 FPR128:$Rt), am_noindex:$addr, simm9:$off),
(STRQpre_isel FPR128:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(pre_store (v2i64 FPR128:$Rt), am_noindex:$addr, simm9:$off),
(STRQpre_isel FPR128:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(pre_store (v2f64 FPR128:$Rt), am_noindex:$addr, simm9:$off),
(STRQpre_isel FPR128:$Rt, am_noindex:$addr, simm9:$off)>;
//---
// (immediate post-indexed)
def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32, "str">;
def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64, "str">;
def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8, "str">;
def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16, "str">;
def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32, "str">;
def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64, "str">;
def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128, "str">;
def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32, "strb">;
def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32, "strh">;
// ISel pseudos and patterns. See expanded comment on StorePostIdxPseudo.
defm STRQpost : StorePostIdxPseudo<FPR128, f128, post_store, STRQpost>;
defm STRDpost : StorePostIdxPseudo<FPR64, f64, post_store, STRDpost>;
defm STRSpost : StorePostIdxPseudo<FPR32, f32, post_store, STRSpost>;
defm STRXpost : StorePostIdxPseudo<GPR64, i64, post_store, STRXpost>;
defm STRWpost : StorePostIdxPseudo<GPR32, i32, post_store, STRWpost>;
defm STRHHpost : StorePostIdxPseudo<GPR32, i32, post_truncsti16, STRHHpost>;
defm STRBBpost : StorePostIdxPseudo<GPR32, i32, post_truncsti8, STRBBpost>;
// truncstore i64
def : Pat<(post_truncsti32 GPR64:$Rt, am_noindex:$addr, simm9:$off),
(STRWpost_isel (EXTRACT_SUBREG GPR64:$Rt, sub_32), am_noindex:$addr,
simm9:$off)>;
def : Pat<(post_truncsti16 GPR64:$Rt, am_noindex:$addr, simm9:$off),
(STRHHpost_isel (EXTRACT_SUBREG GPR64:$Rt, sub_32), am_noindex:$addr,
simm9:$off)>;
def : Pat<(post_truncsti8 GPR64:$Rt, am_noindex:$addr, simm9:$off),
(STRBBpost_isel (EXTRACT_SUBREG GPR64:$Rt, sub_32), am_noindex:$addr,
simm9:$off)>;
def : Pat<(post_store (v8i8 FPR64:$Rt), am_noindex:$addr, simm9:$off),
(STRDpost_isel FPR64:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(post_store (v4i16 FPR64:$Rt), am_noindex:$addr, simm9:$off),
(STRDpost_isel FPR64:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(post_store (v2i32 FPR64:$Rt), am_noindex:$addr, simm9:$off),
(STRDpost_isel FPR64:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(post_store (v2f32 FPR64:$Rt), am_noindex:$addr, simm9:$off),
(STRDpost_isel FPR64:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(post_store (v1i64 FPR64:$Rt), am_noindex:$addr, simm9:$off),
(STRDpost_isel FPR64:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(post_store (v1f64 FPR64:$Rt), am_noindex:$addr, simm9:$off),
(STRDpost_isel FPR64:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(post_store (v16i8 FPR128:$Rt), am_noindex:$addr, simm9:$off),
(STRQpost_isel FPR128:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(post_store (v8i16 FPR128:$Rt), am_noindex:$addr, simm9:$off),
(STRQpost_isel FPR128:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(post_store (v4i32 FPR128:$Rt), am_noindex:$addr, simm9:$off),
(STRQpost_isel FPR128:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(post_store (v4f32 FPR128:$Rt), am_noindex:$addr, simm9:$off),
(STRQpost_isel FPR128:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(post_store (v2i64 FPR128:$Rt), am_noindex:$addr, simm9:$off),
(STRQpost_isel FPR128:$Rt, am_noindex:$addr, simm9:$off)>;
def : Pat<(post_store (v2f64 FPR128:$Rt), am_noindex:$addr, simm9:$off),
(STRQpost_isel FPR128:$Rt, am_noindex:$addr, simm9:$off)>;
//===----------------------------------------------------------------------===//
// Load/store exclusive instructions.
//===----------------------------------------------------------------------===//
def LDARW : LoadAcquire <0b10, 1, 1, 0, 1, GPR32, "ldar">;
def LDARX : LoadAcquire <0b11, 1, 1, 0, 1, GPR64, "ldar">;
def LDARB : LoadAcquire <0b00, 1, 1, 0, 1, GPR32, "ldarb">;
def LDARH : LoadAcquire <0b01, 1, 1, 0, 1, GPR32, "ldarh">;
def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">;
def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">;
def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">;
def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">;
def LDXRW : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">;
def LDXRX : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">;
def LDXRB : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">;
def LDXRH : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">;
def STLRW : StoreRelease <0b10, 1, 0, 0, 1, GPR32, "stlr">;
def STLRX : StoreRelease <0b11, 1, 0, 0, 1, GPR64, "stlr">;
def STLRB : StoreRelease <0b00, 1, 0, 0, 1, GPR32, "stlrb">;
def STLRH : StoreRelease <0b01, 1, 0, 0, 1, GPR32, "stlrh">;
def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">;
def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">;
def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">;
def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">;
def STXRW : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">;
def STXRX : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">;
def STXRB : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">;
def STXRH : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">;
def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">;
def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">;
def LDXPW : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">;
def LDXPX : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">;
def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">;
def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">;
def STXPW : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">;
def STXPX : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">;
//===----------------------------------------------------------------------===//
// Scaled floating point to integer conversion instructions.
//===----------------------------------------------------------------------===//
defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_arm64_neon_fcvtas>;
defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_arm64_neon_fcvtau>;
defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_arm64_neon_fcvtms>;
defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_arm64_neon_fcvtmu>;
defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_arm64_neon_fcvtns>;
defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_arm64_neon_fcvtnu>;
defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_arm64_neon_fcvtps>;
defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_arm64_neon_fcvtpu>;
defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
let isCodeGenOnly = 1 in {
defm FCVTZS_Int : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", int_arm64_neon_fcvtzs>;
defm FCVTZU_Int : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", int_arm64_neon_fcvtzu>;
defm FCVTZS_Int : FPToIntegerScaled<0b11, 0b000, "fcvtzs", int_arm64_neon_fcvtzs>;
defm FCVTZU_Int : FPToIntegerScaled<0b11, 0b001, "fcvtzu", int_arm64_neon_fcvtzu>;
}
//===----------------------------------------------------------------------===//
// Scaled integer to floating point conversion instructions.
//===----------------------------------------------------------------------===//
defm SCVTF : IntegerToFP<0, "scvtf", sint_to_fp>;
defm UCVTF : IntegerToFP<1, "ucvtf", uint_to_fp>;
//===----------------------------------------------------------------------===//
// Unscaled integer to floating point conversion instruction.
//===----------------------------------------------------------------------===//
defm FMOV : UnscaledConversion<"fmov">;
def : Pat<(f32 (fpimm0)), (FMOVWSr WZR)>, Requires<[NoZCZ]>;
def : Pat<(f64 (fpimm0)), (FMOVXDr XZR)>, Requires<[NoZCZ]>;
//===----------------------------------------------------------------------===//
// Floating point conversion instruction.
//===----------------------------------------------------------------------===//
defm FCVT : FPConversion<"fcvt">;
def : Pat<(f32_to_f16 FPR32:$Rn),
(i32 (COPY_TO_REGCLASS
(f32 (SUBREG_TO_REG (i32 0), (FCVTHSr FPR32:$Rn), hsub)),
GPR32))>;
def FCVTSHpseudo : Pseudo<(outs FPR32:$Rd), (ins FPR32:$Rn),
[(set (f32 FPR32:$Rd), (f16_to_f32 i32:$Rn))]>;
//===----------------------------------------------------------------------===//
// Floating point single operand instructions.
//===----------------------------------------------------------------------===//
defm FABS : SingleOperandFPData<0b0001, "fabs", fabs>;
defm FMOV : SingleOperandFPData<0b0000, "fmov">;
defm FNEG : SingleOperandFPData<0b0010, "fneg", fneg>;
defm FRINTA : SingleOperandFPData<0b1100, "frinta", frnd>;
defm FRINTI : SingleOperandFPData<0b1111, "frinti", fnearbyint>;
defm FRINTM : SingleOperandFPData<0b1010, "frintm", ffloor>;
defm FRINTN : SingleOperandFPData<0b1000, "frintn", int_arm64_neon_frintn>;
defm FRINTP : SingleOperandFPData<0b1001, "frintp", fceil>;
def : Pat<(v1f64 (int_arm64_neon_frintn (v1f64 FPR64:$Rn))),
(FRINTNDr FPR64:$Rn)>;
// FRINTX is inserted to set the flags as required by FENV_ACCESS ON behavior
// in the C spec. Setting hasSideEffects ensures it is not DCE'd.
// <rdar://problem/13715968>
// TODO: We should really model the FPSR flags correctly. This is really ugly.
let hasSideEffects = 1 in {
defm FRINTX : SingleOperandFPData<0b1110, "frintx", frint>;
}
defm FRINTZ : SingleOperandFPData<0b1011, "frintz", ftrunc>;
let SchedRW = [WriteFDiv] in {
defm FSQRT : SingleOperandFPData<0b0011, "fsqrt", fsqrt>;
}
//===----------------------------------------------------------------------===//
// Floating point two operand instructions.
//===----------------------------------------------------------------------===//
defm FADD : TwoOperandFPData<0b0010, "fadd", fadd>;
let SchedRW = [WriteFDiv] in {
defm FDIV : TwoOperandFPData<0b0001, "fdiv", fdiv>;
}
defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", int_arm64_neon_fmaxnm>;
defm FMAX : TwoOperandFPData<0b0100, "fmax", ARM64fmax>;
defm FMINNM : TwoOperandFPData<0b0111, "fminnm", int_arm64_neon_fminnm>;
defm FMIN : TwoOperandFPData<0b0101, "fmin", ARM64fmin>;
let SchedRW = [WriteFMul] in {
defm FMUL : TwoOperandFPData<0b0000, "fmul", fmul>;
defm FNMUL : TwoOperandFPDataNeg<0b1000, "fnmul", fmul>;
}
defm FSUB : TwoOperandFPData<0b0011, "fsub", fsub>;
def : Pat<(v1f64 (ARM64fmax (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
(FMAXDrr FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(v1f64 (ARM64fmin (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
(FMINDrr FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(v1f64 (int_arm64_neon_fmaxnm (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
(FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(v1f64 (int_arm64_neon_fminnm (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
(FMINNMDrr FPR64:$Rn, FPR64:$Rm)>;
//===----------------------------------------------------------------------===//
// Floating point three operand instructions.
//===----------------------------------------------------------------------===//
defm FMADD : ThreeOperandFPData<0, 0, "fmadd", fma>;
defm FMSUB : ThreeOperandFPData<0, 1, "fmsub",
TriOpFrag<(fma node:$LHS, (fneg node:$MHS), node:$RHS)> >;
defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd",
TriOpFrag<(fneg (fma node:$LHS, node:$MHS, node:$RHS))> >;
defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub",
TriOpFrag<(fma node:$LHS, node:$MHS, (fneg node:$RHS))> >;
// The following def pats catch the case where the LHS of an FMA is negated.
// The TriOpFrag above catches the case where the middle operand is negated.
// N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike
// the NEON variant.
def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)),
(FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)),
(FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
// We handled -(a + b*c) for FNMADD above, now it's time for "(-a) + (-b)*c" and
// "(-a) + b*(-c)".
def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))),
(FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))),
(FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
def : Pat<(f32 (fma FPR32:$Rn, (fneg FPR32:$Rm), (fneg FPR32:$Ra))),
(FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
def : Pat<(f64 (fma FPR64:$Rn, (fneg FPR64:$Rm), (fneg FPR64:$Ra))),
(FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
//===----------------------------------------------------------------------===//
// Floating point comparison instructions.
//===----------------------------------------------------------------------===//
defm FCMPE : FPComparison<1, "fcmpe">;
defm FCMP : FPComparison<0, "fcmp", ARM64fcmp>;
//===----------------------------------------------------------------------===//
// Floating point conditional comparison instructions.
//===----------------------------------------------------------------------===//
defm FCCMPE : FPCondComparison<1, "fccmpe">;
defm FCCMP : FPCondComparison<0, "fccmp">;
//===----------------------------------------------------------------------===//
// Floating point conditional select instruction.
//===----------------------------------------------------------------------===//
defm FCSEL : FPCondSelect<"fcsel">;
// CSEL instructions providing f128 types need to be handled by a
// pseudo-instruction since the eventual code will need to introduce basic
// blocks and control flow.
def F128CSEL : Pseudo<(outs FPR128:$Rd),
(ins FPR128:$Rn, FPR128:$Rm, ccode:$cond),
[(set (f128 FPR128:$Rd),
(ARM64csel FPR128:$Rn, FPR128:$Rm,
(i32 imm:$cond), NZCV))]> {
let Uses = [NZCV];
let usesCustomInserter = 1;
}
//===----------------------------------------------------------------------===//
// Floating point immediate move.
//===----------------------------------------------------------------------===//
let isReMaterializable = 1 in {
defm FMOV : FPMoveImmediate<"fmov">;
}
//===----------------------------------------------------------------------===//
// Advanced SIMD two vector instructions.
//===----------------------------------------------------------------------===//
defm ABS : SIMDTwoVectorBHSD<0, 0b01011, "abs", int_arm64_neon_abs>;
defm CLS : SIMDTwoVectorBHS<0, 0b00100, "cls", int_arm64_neon_cls>;
defm CLZ : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>;
defm CMEQ : SIMDCmpTwoVector<0, 0b01001, "cmeq", ARM64cmeqz>;
defm CMGE : SIMDCmpTwoVector<1, 0b01000, "cmge", ARM64cmgez>;
defm CMGT : SIMDCmpTwoVector<0, 0b01000, "cmgt", ARM64cmgtz>;
defm CMLE : SIMDCmpTwoVector<1, 0b01001, "cmle", ARM64cmlez>;
defm CMLT : SIMDCmpTwoVector<0, 0b01010, "cmlt", ARM64cmltz>;
defm CNT : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>;
defm FABS : SIMDTwoVectorFP<0, 1, 0b01111, "fabs", fabs>;
defm FCMEQ : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", ARM64fcmeqz>;
defm FCMGE : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", ARM64fcmgez>;
defm FCMGT : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", ARM64fcmgtz>;
defm FCMLE : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", ARM64fcmlez>;
defm FCMLT : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", ARM64fcmltz>;
defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_arm64_neon_fcvtas>;
defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_arm64_neon_fcvtau>;
defm FCVTL : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">;
def : Pat<(v4f32 (int_arm64_neon_vcvthf2fp (v4i16 V64:$Rn))),
(FCVTLv4i16 V64:$Rn)>;
def : Pat<(v4f32 (int_arm64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn),
(i64 4)))),
(FCVTLv8i16 V128:$Rn)>;
def : Pat<(v2f64 (fextend (v2f32 V64:$Rn))), (FCVTLv2i32 V64:$Rn)>;
def : Pat<(v2f64 (fextend (v2f32 (extract_subvector (v4f32 V128:$Rn),
(i64 2))))),
(FCVTLv4i32 V128:$Rn)>;
defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_arm64_neon_fcvtms>;
defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_arm64_neon_fcvtmu>;
defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_arm64_neon_fcvtns>;
defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_arm64_neon_fcvtnu>;
defm FCVTN : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">;
def : Pat<(v4i16 (int_arm64_neon_vcvtfp2hf (v4f32 V128:$Rn))),
(FCVTNv4i16 V128:$Rn)>;
def : Pat<(concat_vectors V64:$Rd,
(v4i16 (int_arm64_neon_vcvtfp2hf (v4f32 V128:$Rn)))),
(FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
def : Pat<(v2f32 (fround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>;
def : Pat<(concat_vectors V64:$Rd, (v2f32 (fround (v2f64 V128:$Rn)))),
(FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_arm64_neon_fcvtps>;
defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_arm64_neon_fcvtpu>;
defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn",
int_arm64_neon_fcvtxn>;
defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", fp_to_sint>;
defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", fp_to_uint>;
let isCodeGenOnly = 1 in {
defm FCVTZS_Int : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs",
int_arm64_neon_fcvtzs>;
defm FCVTZU_Int : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu",
int_arm64_neon_fcvtzu>;
}
defm FNEG : SIMDTwoVectorFP<1, 1, 0b01111, "fneg", fneg>;
defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_arm64_neon_frecpe>;
defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", frnd>;
defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", fnearbyint>;
defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", ffloor>;
defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", int_arm64_neon_frintn>;
defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", fceil>;
defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", frint>;
defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", ftrunc>;
defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_arm64_neon_frsqrte>;
defm FSQRT : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", fsqrt>;
defm NEG : SIMDTwoVectorBHSD<1, 0b01011, "neg",
UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
defm NOT : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>;
// Aliases for MVN -> NOT.
def : InstAlias<"mvn.8b $Vd, $Vn", (NOTv8i8 V64:$Vd, V64:$Vn)>;
def : InstAlias<"mvn.16b $Vd, $Vn", (NOTv16i8 V128:$Vd, V128:$Vn)>;
def : InstAlias<"mvn $Vd.8b, $Vn.8b", (NOTv8i8 V64:$Vd, V64:$Vn)>;
def : InstAlias<"mvn $Vd.16b, $Vn.16b", (NOTv16i8 V128:$Vd, V128:$Vn)>;
def : Pat<(ARM64neg (v8i8 V64:$Rn)), (NEGv8i8 V64:$Rn)>;
def : Pat<(ARM64neg (v16i8 V128:$Rn)), (NEGv16i8 V128:$Rn)>;
def : Pat<(ARM64neg (v4i16 V64:$Rn)), (NEGv4i16 V64:$Rn)>;
def : Pat<(ARM64neg (v8i16 V128:$Rn)), (NEGv8i16 V128:$Rn)>;
def : Pat<(ARM64neg (v2i32 V64:$Rn)), (NEGv2i32 V64:$Rn)>;
def : Pat<(ARM64neg (v4i32 V128:$Rn)), (NEGv4i32 V128:$Rn)>;
def : Pat<(ARM64neg (v2i64 V128:$Rn)), (NEGv2i64 V128:$Rn)>;
def : Pat<(ARM64not (v8i8 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
def : Pat<(ARM64not (v16i8 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(ARM64not (v4i16 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
def : Pat<(ARM64not (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(ARM64not (v2i32 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
def : Pat<(ARM64not (v1i64 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
def : Pat<(ARM64not (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(ARM64not (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(vnot (v4i16 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(vnot (v2i32 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
defm RBIT : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", int_arm64_neon_rbit>;
defm REV16 : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", ARM64rev16>;
defm REV32 : SIMDTwoVectorBH<1, 0b00000, "rev32", ARM64rev32>;
defm REV64 : SIMDTwoVectorBHS<0, 0b00000, "rev64", ARM64rev64>;
defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp",
BinOpFrag<(add node:$LHS, (int_arm64_neon_saddlp node:$RHS))> >;
defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", int_arm64_neon_saddlp>;
defm SCVTF : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", sint_to_fp>;
defm SHLL : SIMDVectorLShiftLongBySizeBHS;
defm SQABS : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_arm64_neon_sqabs>;
defm SQNEG : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_arm64_neon_sqneg>;
defm SQXTN : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_arm64_neon_sqxtn>;
defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_arm64_neon_sqxtun>;
defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_arm64_neon_suqadd>;
defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp",
BinOpFrag<(add node:$LHS, (int_arm64_neon_uaddlp node:$RHS))> >;
defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp",
int_arm64_neon_uaddlp>;
defm UCVTF : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", uint_to_fp>;
defm UQXTN : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_arm64_neon_uqxtn>;
defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_arm64_neon_urecpe>;
defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_arm64_neon_ursqrte>;
defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_arm64_neon_usqadd>;
defm XTN : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>;
def : Pat<(v2f32 (ARM64rev64 V64:$Rn)), (REV64v2i32 V64:$Rn)>;
def : Pat<(v4f32 (ARM64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>;
// Patterns for vector long shift (by element width). These need to match all
// three of zext, sext and anyext so it's easier to pull the patterns out of the
// definition.
multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> {
def : Pat<(ARM64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)),
(SHLLv8i8 V64:$Rn)>;
def : Pat<(ARM64vshl (v8i16 (ext (extract_high_v16i8 V128:$Rn))), (i32 8)),
(SHLLv16i8 V128:$Rn)>;
def : Pat<(ARM64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)),
(SHLLv4i16 V64:$Rn)>;
def : Pat<(ARM64vshl (v4i32 (ext (extract_high_v8i16 V128:$Rn))), (i32 16)),
(SHLLv8i16 V128:$Rn)>;
def : Pat<(ARM64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)),
(SHLLv2i32 V64:$Rn)>;
def : Pat<(ARM64vshl (v2i64 (ext (extract_high_v4i32 V128:$Rn))), (i32 32)),
(SHLLv4i32 V128:$Rn)>;
}
defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>;
defm : SIMDVectorLShiftLongBySizeBHSPats<zext>;
defm : SIMDVectorLShiftLongBySizeBHSPats<sext>;
//===----------------------------------------------------------------------===//
// Advanced SIMD three vector instructions.
//===----------------------------------------------------------------------===//
defm ADD : SIMDThreeSameVector<0, 0b10000, "add", add>;
defm ADDP : SIMDThreeSameVector<0, 0b10111, "addp", int_arm64_neon_addp>;
defm CMEQ : SIMDThreeSameVector<1, 0b10001, "cmeq", ARM64cmeq>;
defm CMGE : SIMDThreeSameVector<0, 0b00111, "cmge", ARM64cmge>;
defm CMGT : SIMDThreeSameVector<0, 0b00110, "cmgt", ARM64cmgt>;
defm CMHI : SIMDThreeSameVector<1, 0b00110, "cmhi", ARM64cmhi>;
defm CMHS : SIMDThreeSameVector<1, 0b00111, "cmhs", ARM64cmhs>;
defm CMTST : SIMDThreeSameVector<0, 0b10001, "cmtst", ARM64cmtst>;
defm FABD : SIMDThreeSameVectorFP<1,1,0b11010,"fabd", int_arm64_neon_fabd>;
defm FACGE : SIMDThreeSameVectorFPCmp<1,0,0b11101,"facge",int_arm64_neon_facge>;
defm FACGT : SIMDThreeSameVectorFPCmp<1,1,0b11101,"facgt",int_arm64_neon_facgt>;
defm FADDP : SIMDThreeSameVectorFP<1,0,0b11010,"faddp",int_arm64_neon_addp>;
defm FADD : SIMDThreeSameVectorFP<0,0,0b11010,"fadd", fadd>;
defm FCMEQ : SIMDThreeSameVectorFPCmp<0, 0, 0b11100, "fcmeq", ARM64fcmeq>;
defm FCMGE : SIMDThreeSameVectorFPCmp<1, 0, 0b11100, "fcmge", ARM64fcmge>;
defm FCMGT : SIMDThreeSameVectorFPCmp<1, 1, 0b11100, "fcmgt", ARM64fcmgt>;
defm FDIV : SIMDThreeSameVectorFP<1,0,0b11111,"fdiv", fdiv>;
defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b11000,"fmaxnmp", int_arm64_neon_fmaxnmp>;
defm FMAXNM : SIMDThreeSameVectorFP<0,0,0b11000,"fmaxnm", int_arm64_neon_fmaxnm>;
defm FMAXP : SIMDThreeSameVectorFP<1,0,0b11110,"fmaxp", int_arm64_neon_fmaxp>;
defm FMAX : SIMDThreeSameVectorFP<0,0,0b11110,"fmax", ARM64fmax>;
defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b11000,"fminnmp", int_arm64_neon_fminnmp>;
defm FMINNM : SIMDThreeSameVectorFP<0,1,0b11000,"fminnm", int_arm64_neon_fminnm>;
defm FMINP : SIMDThreeSameVectorFP<1,1,0b11110,"fminp", int_arm64_neon_fminp>;
defm FMIN : SIMDThreeSameVectorFP<0,1,0b11110,"fmin", ARM64fmin>;
// NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the
// instruction expects the addend first, while the fma intrinsic puts it last.
defm FMLA : SIMDThreeSameVectorFPTied<0, 0, 0b11001, "fmla",
TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
defm FMLS : SIMDThreeSameVectorFPTied<0, 1, 0b11001, "fmls",
TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
// The following def pats catch the case where the LHS of an FMA is negated.
// The TriOpFrag above catches the case where the middle operand is negated.
def : Pat<(v2f32 (fma (fneg V64:$Rn), V64:$Rm, V64:$Rd)),
(FMLSv2f32 V64:$Rd, V64:$Rn, V64:$Rm)>;
def : Pat<(v4f32 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
(FMLSv4f32 V128:$Rd, V128:$Rn, V128:$Rm)>;
def : Pat<(v2f64 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
(FMLSv2f64 V128:$Rd, V128:$Rn, V128:$Rm)>;
defm FMULX : SIMDThreeSameVectorFP<0,0,0b11011,"fmulx", int_arm64_neon_fmulx>;
defm FMUL : SIMDThreeSameVectorFP<1,0,0b11011,"fmul", fmul>;
defm FRECPS : SIMDThreeSameVectorFP<0,0,0b11111,"frecps", int_arm64_neon_frecps>;
defm FRSQRTS : SIMDThreeSameVectorFP<0,1,0b11111,"frsqrts", int_arm64_neon_frsqrts>;
defm FSUB : SIMDThreeSameVectorFP<0,1,0b11010,"fsub", fsub>;
defm MLA : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla",
TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))> >;
defm MLS : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls",
TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))> >;
defm MUL : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>;
defm PMUL : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_arm64_neon_pmul>;
defm SABA : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba",
TriOpFrag<(add node:$LHS, (int_arm64_neon_sabd node:$MHS, node:$RHS))> >;
defm SABD : SIMDThreeSameVectorBHS<0,0b01110,"sabd", int_arm64_neon_sabd>;
defm SHADD : SIMDThreeSameVectorBHS<0,0b00000,"shadd", int_arm64_neon_shadd>;
defm SHSUB : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_arm64_neon_shsub>;
defm SMAXP : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_arm64_neon_smaxp>;
defm SMAX : SIMDThreeSameVectorBHS<0,0b01100,"smax", int_arm64_neon_smax>;
defm SMINP : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_arm64_neon_sminp>;
defm SMIN : SIMDThreeSameVectorBHS<0,0b01101,"smin", int_arm64_neon_smin>;
defm SQADD : SIMDThreeSameVector<0,0b00001,"sqadd", int_arm64_neon_sqadd>;
defm SQDMULH : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_arm64_neon_sqdmulh>;
defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_arm64_neon_sqrdmulh>;
defm SQRSHL : SIMDThreeSameVector<0,0b01011,"sqrshl", int_arm64_neon_sqrshl>;
defm SQSHL : SIMDThreeSameVector<0,0b01001,"sqshl", int_arm64_neon_sqshl>;
defm SQSUB : SIMDThreeSameVector<0,0b00101,"sqsub", int_arm64_neon_sqsub>;
defm SRHADD : SIMDThreeSameVectorBHS<0,0b00010,"srhadd",int_arm64_neon_srhadd>;
defm SRSHL : SIMDThreeSameVector<0,0b01010,"srshl", int_arm64_neon_srshl>;
defm SSHL : SIMDThreeSameVector<0,0b01000,"sshl", int_arm64_neon_sshl>;
defm SUB : SIMDThreeSameVector<1,0b10000,"sub", sub>;
defm UABA : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba",
TriOpFrag<(add node:$LHS, (int_arm64_neon_uabd node:$MHS, node:$RHS))> >;
defm UABD : SIMDThreeSameVectorBHS<1,0b01110,"uabd", int_arm64_neon_uabd>;
defm UHADD : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", int_arm64_neon_uhadd>;
defm UHSUB : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_arm64_neon_uhsub>;
defm UMAXP : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_arm64_neon_umaxp>;
defm UMAX : SIMDThreeSameVectorBHS<1,0b01100,"umax", int_arm64_neon_umax>;
defm UMINP : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_arm64_neon_uminp>;
defm UMIN : SIMDThreeSameVectorBHS<1,0b01101,"umin", int_arm64_neon_umin>;
defm UQADD : SIMDThreeSameVector<1,0b00001,"uqadd", int_arm64_neon_uqadd>;
defm UQRSHL : SIMDThreeSameVector<1,0b01011,"uqrshl", int_arm64_neon_uqrshl>;
defm UQSHL : SIMDThreeSameVector<1,0b01001,"uqshl", int_arm64_neon_uqshl>;
defm UQSUB : SIMDThreeSameVector<1,0b00101,"uqsub", int_arm64_neon_uqsub>;
defm URHADD : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", int_arm64_neon_urhadd>;
defm URSHL : SIMDThreeSameVector<1,0b01010,"urshl", int_arm64_neon_urshl>;
defm USHL : SIMDThreeSameVector<1,0b01000,"ushl", int_arm64_neon_ushl>;
defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>;
defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic",
BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >;
defm BIF : SIMDLogicalThreeVector<1, 0b11, "bif">;
defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit", ARM64bit>;
defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl",
TriOpFrag<(or (and node:$LHS, node:$MHS), (and (vnot node:$LHS), node:$RHS))>>;
defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>;
defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn",
BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >;
defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>;
def : Pat<(ARM64bsl (v8i8 V64:$Rd), V64:$Rn, V64:$Rm),
(BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
def : Pat<(ARM64bsl (v4i16 V64:$Rd), V64:$Rn, V64:$Rm),
(BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
def : Pat<(ARM64bsl (v2i32 V64:$Rd), V64:$Rn, V64:$Rm),
(BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
def : Pat<(ARM64bsl (v1i64 V64:$Rd), V64:$Rn, V64:$Rm),
(BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
def : Pat<(ARM64bsl (v16i8 V128:$Rd), V128:$Rn, V128:$Rm),
(BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
def : Pat<(ARM64bsl (v8i16 V128:$Rd), V128:$Rn, V128:$Rm),
(BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
def : Pat<(ARM64bsl (v4i32 V128:$Rd), V128:$Rn, V128:$Rm),
(BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
def : Pat<(ARM64bsl (v2i64 V128:$Rd), V128:$Rn, V128:$Rm),
(BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
// FIXME: the .16b and .8b variantes should be emitted by the
// AsmWriter. TableGen's AsmWriter-generator doesn't deal with variant syntaxes
// in aliases yet though.
def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}",
(ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
def : InstAlias<"{mov\t$dst.8h, $src.8h|mov.8h\t$dst, $src}",
(ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
def : InstAlias<"{mov\t$dst.4s, $src.4s|mov.4s\t$dst, $src}",
(ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
def : InstAlias<"{mov\t$dst.2d, $src.2d|mov.2d\t$dst, $src}",
(ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
def : InstAlias<"{mov\t$dst.8b, $src.8b|mov.8b\t$dst, $src}",
(ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
def : InstAlias<"{mov\t$dst.4h, $src.4h|mov.4h\t$dst, $src}",
(ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
def : InstAlias<"{mov\t$dst.2s, $src.2s|mov.2s\t$dst, $src}",
(ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
def : InstAlias<"{mov\t$dst.1d, $src.1d|mov.1d\t$dst, $src}",
(ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" #
"|cmls.8b\t$dst, $src1, $src2}",
(CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" #
"|cmls.16b\t$dst, $src1, $src2}",
(CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" #
"|cmls.4h\t$dst, $src1, $src2}",
(CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" #
"|cmls.8h\t$dst, $src1, $src2}",
(CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" #
"|cmls.2s\t$dst, $src1, $src2}",
(CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" #
"|cmls.4s\t$dst, $src1, $src2}",
(CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" #
"|cmls.2d\t$dst, $src1, $src2}",
(CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" #
"|cmlo.8b\t$dst, $src1, $src2}",
(CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" #
"|cmlo.16b\t$dst, $src1, $src2}",
(CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" #
"|cmlo.4h\t$dst, $src1, $src2}",
(CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" #
"|cmlo.8h\t$dst, $src1, $src2}",
(CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" #
"|cmlo.2s\t$dst, $src1, $src2}",
(CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" #
"|cmlo.4s\t$dst, $src1, $src2}",
(CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" #
"|cmlo.2d\t$dst, $src1, $src2}",
(CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" #
"|cmle.8b\t$dst, $src1, $src2}",
(CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" #
"|cmle.16b\t$dst, $src1, $src2}",
(CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" #
"|cmle.4h\t$dst, $src1, $src2}",
(CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" #
"|cmle.8h\t$dst, $src1, $src2}",
(CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" #
"|cmle.2s\t$dst, $src1, $src2}",
(CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" #
"|cmle.4s\t$dst, $src1, $src2}",
(CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" #
"|cmle.2d\t$dst, $src1, $src2}",
(CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" #
"|cmlt.8b\t$dst, $src1, $src2}",
(CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" #
"|cmlt.16b\t$dst, $src1, $src2}",
(CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" #
"|cmlt.4h\t$dst, $src1, $src2}",
(CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" #
"|cmlt.8h\t$dst, $src1, $src2}",
(CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" #
"|cmlt.2s\t$dst, $src1, $src2}",
(CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" #
"|cmlt.4s\t$dst, $src1, $src2}",
(CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" #
"|cmlt.2d\t$dst, $src1, $src2}",
(CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" #
"|fcmle.2s\t$dst, $src1, $src2}",
(FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" #
"|fcmle.4s\t$dst, $src1, $src2}",
(FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" #
"|fcmle.2d\t$dst, $src1, $src2}",
(FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" #
"|fcmlt.2s\t$dst, $src1, $src2}",
(FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" #
"|fcmlt.4s\t$dst, $src1, $src2}",
(FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" #
"|fcmlt.2d\t$dst, $src1, $src2}",
(FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" #
"|facle.2s\t$dst, $src1, $src2}",
(FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" #
"|facle.4s\t$dst, $src1, $src2}",
(FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" #
"|facle.2d\t$dst, $src1, $src2}",
(FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" #
"|faclt.2s\t$dst, $src1, $src2}",
(FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" #
"|faclt.4s\t$dst, $src1, $src2}",
(FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" #
"|faclt.2d\t$dst, $src1, $src2}",
(FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
//===----------------------------------------------------------------------===//
// Advanced SIMD three scalar instructions.
//===----------------------------------------------------------------------===//
defm ADD : SIMDThreeScalarD<0, 0b10000, "add", add>;
defm CMEQ : SIMDThreeScalarD<1, 0b10001, "cmeq", ARM64cmeq>;
defm CMGE : SIMDThreeScalarD<0, 0b00111, "cmge", ARM64cmge>;
defm CMGT : SIMDThreeScalarD<0, 0b00110, "cmgt", ARM64cmgt>;
defm CMHI : SIMDThreeScalarD<1, 0b00110, "cmhi", ARM64cmhi>;
defm CMHS : SIMDThreeScalarD<1, 0b00111, "cmhs", ARM64cmhs>;
defm CMTST : SIMDThreeScalarD<0, 0b10001, "cmtst", ARM64cmtst>;
defm FABD : SIMDThreeScalarSD<1, 1, 0b11010, "fabd", int_arm64_sisd_fabd>;
def : Pat<(v1f64 (int_arm64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
(FABD64 FPR64:$Rn, FPR64:$Rm)>;
defm FACGE : SIMDThreeScalarFPCmp<1, 0, 0b11101, "facge",
int_arm64_neon_facge>;
defm FACGT : SIMDThreeScalarFPCmp<1, 1, 0b11101, "facgt",
int_arm64_neon_facgt>;
defm FCMEQ : SIMDThreeScalarFPCmp<0, 0, 0b11100, "fcmeq", ARM64fcmeq>;
defm FCMGE : SIMDThreeScalarFPCmp<1, 0, 0b11100, "fcmge", ARM64fcmge>;
defm FCMGT : SIMDThreeScalarFPCmp<1, 1, 0b11100, "fcmgt", ARM64fcmgt>;
defm FMULX : SIMDThreeScalarSD<0, 0, 0b11011, "fmulx", int_arm64_neon_fmulx>;
defm FRECPS : SIMDThreeScalarSD<0, 0, 0b11111, "frecps", int_arm64_neon_frecps>;
defm FRSQRTS : SIMDThreeScalarSD<0, 1, 0b11111, "frsqrts", int_arm64_neon_frsqrts>;
defm SQADD : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_arm64_neon_sqadd>;
defm SQDMULH : SIMDThreeScalarHS< 0, 0b10110, "sqdmulh", int_arm64_neon_sqdmulh>;
defm SQRDMULH : SIMDThreeScalarHS< 1, 0b10110, "sqrdmulh", int_arm64_neon_sqrdmulh>;
defm SQRSHL : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_arm64_neon_sqrshl>;
defm SQSHL : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_arm64_neon_sqshl>;
defm SQSUB : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_arm64_neon_sqsub>;
defm SRSHL : SIMDThreeScalarD< 0, 0b01010, "srshl", int_arm64_neon_srshl>;
defm SSHL : SIMDThreeScalarD< 0, 0b01000, "sshl", int_arm64_neon_sshl>;
defm SUB : SIMDThreeScalarD< 1, 0b10000, "sub", sub>;
defm UQADD : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_arm64_neon_uqadd>;
defm UQRSHL : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_arm64_neon_uqrshl>;
defm UQSHL : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_arm64_neon_uqshl>;
defm UQSUB : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_arm64_neon_uqsub>;
defm URSHL : SIMDThreeScalarD< 1, 0b01010, "urshl", int_arm64_neon_urshl>;
defm USHL : SIMDThreeScalarD< 1, 0b01000, "ushl", int_arm64_neon_ushl>;
def : InstAlias<"cmls $dst, $src1, $src2",
(CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1)>;
def : InstAlias<"cmle $dst, $src1, $src2",
(CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1)>;
def : InstAlias<"cmlo $dst, $src1, $src2",
(CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1)>;
def : InstAlias<"cmlt $dst, $src1, $src2",
(CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1)>;
def : InstAlias<"fcmle $dst, $src1, $src2",
(FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1)>;
def : InstAlias<"fcmle $dst, $src1, $src2",
(FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1)>;
def : InstAlias<"fcmlt $dst, $src1, $src2",
(FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1)>;
def : InstAlias<"fcmlt $dst, $src1, $src2",
(FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1)>;
def : InstAlias<"facle $dst, $src1, $src2",
(FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1)>;
def : InstAlias<"facle $dst, $src1, $src2",
(FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1)>;
def : InstAlias<"faclt $dst, $src1, $src2",
(FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1)>;
def : InstAlias<"faclt $dst, $src1, $src2",
(FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1)>;
//===----------------------------------------------------------------------===//
// Advanced SIMD three scalar instructions (mixed operands).
//===----------------------------------------------------------------------===//
defm SQDMULL : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull",
int_arm64_neon_sqdmulls_scalar>;
defm SQDMLAL : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">;
defm SQDMLSL : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">;
def : Pat<(i64 (int_arm64_neon_sqadd (i64 FPR64:$Rd),
(i64 (int_arm64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
(i32 FPR32:$Rm))))),
(SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
def : Pat<(i64 (int_arm64_neon_sqsub (i64 FPR64:$Rd),
(i64 (int_arm64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
(i32 FPR32:$Rm))))),
(SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
//===----------------------------------------------------------------------===//
// Advanced SIMD two scalar instructions.
//===----------------------------------------------------------------------===//
defm ABS : SIMDTwoScalarD< 0, 0b01011, "abs", int_arm64_neon_abs>;
defm CMEQ : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", ARM64cmeqz>;
defm CMGE : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", ARM64cmgez>;
defm CMGT : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", ARM64cmgtz>;
defm CMLE : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", ARM64cmlez>;
defm CMLT : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", ARM64cmltz>;
defm FCMEQ : SIMDCmpTwoScalarSD<0, 1, 0b01101, "fcmeq", ARM64fcmeqz>;
defm FCMGE : SIMDCmpTwoScalarSD<1, 1, 0b01100, "fcmge", ARM64fcmgez>;
defm FCMGT : SIMDCmpTwoScalarSD<0, 1, 0b01100, "fcmgt", ARM64fcmgtz>;
defm FCMLE : SIMDCmpTwoScalarSD<1, 1, 0b01101, "fcmle", ARM64fcmlez>;
defm FCMLT : SIMDCmpTwoScalarSD<0, 1, 0b01110, "fcmlt", ARM64fcmltz>;
defm FCVTAS : SIMDTwoScalarSD< 0, 0, 0b11100, "fcvtas">;
defm FCVTAU : SIMDTwoScalarSD< 1, 0, 0b11100, "fcvtau">;
defm FCVTMS : SIMDTwoScalarSD< 0, 0, 0b11011, "fcvtms">;
defm FCVTMU : SIMDTwoScalarSD< 1, 0, 0b11011, "fcvtmu">;
defm FCVTNS : SIMDTwoScalarSD< 0, 0, 0b11010, "fcvtns">;
defm FCVTNU : SIMDTwoScalarSD< 1, 0, 0b11010, "fcvtnu">;
defm FCVTPS : SIMDTwoScalarSD< 0, 1, 0b11010, "fcvtps">;
defm FCVTPU : SIMDTwoScalarSD< 1, 1, 0b11010, "fcvtpu">;
def FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">;
defm FCVTZS : SIMDTwoScalarSD< 0, 1, 0b11011, "fcvtzs">;
defm FCVTZU : SIMDTwoScalarSD< 1, 1, 0b11011, "fcvtzu">;
defm FRECPE : SIMDTwoScalarSD< 0, 1, 0b11101, "frecpe">;
defm FRECPX : SIMDTwoScalarSD< 0, 1, 0b11111, "frecpx">;
defm FRSQRTE : SIMDTwoScalarSD< 1, 1, 0b11101, "frsqrte">;
defm NEG : SIMDTwoScalarD< 1, 0b01011, "neg",
UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
defm SCVTF : SIMDTwoScalarCVTSD< 0, 0, 0b11101, "scvtf", ARM64sitof>;
defm SQABS : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_arm64_neon_sqabs>;
defm SQNEG : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_arm64_neon_sqneg>;
defm SQXTN : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_arm64_neon_scalar_sqxtn>;
defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_arm64_neon_scalar_sqxtun>;
defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd",
int_arm64_neon_suqadd>;
defm UCVTF : SIMDTwoScalarCVTSD< 1, 0, 0b11101, "ucvtf", ARM64uitof>;
defm UQXTN : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_arm64_neon_scalar_uqxtn>;
defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd",
int_arm64_neon_usqadd>;
def : Pat<(ARM64neg (v1i64 V64:$Rn)), (NEGv1i64 V64:$Rn)>;
def : Pat<(v1i64 (int_arm64_neon_fcvtas (v1f64 FPR64:$Rn))),
(FCVTASv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_arm64_neon_fcvtau (v1f64 FPR64:$Rn))),
(FCVTAUv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_arm64_neon_fcvtms (v1f64 FPR64:$Rn))),
(FCVTMSv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_arm64_neon_fcvtmu (v1f64 FPR64:$Rn))),
(FCVTMUv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_arm64_neon_fcvtns (v1f64 FPR64:$Rn))),
(FCVTNSv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_arm64_neon_fcvtnu (v1f64 FPR64:$Rn))),
(FCVTNUv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_arm64_neon_fcvtps (v1f64 FPR64:$Rn))),
(FCVTPSv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_arm64_neon_fcvtpu (v1f64 FPR64:$Rn))),
(FCVTPUv1i64 FPR64:$Rn)>;
def : Pat<(f32 (int_arm64_neon_frecpe (f32 FPR32:$Rn))),
(FRECPEv1i32 FPR32:$Rn)>;
def : Pat<(f64 (int_arm64_neon_frecpe (f64 FPR64:$Rn))),
(FRECPEv1i64 FPR64:$Rn)>;
def : Pat<(v1f64 (int_arm64_neon_frecpe (v1f64 FPR64:$Rn))),
(FRECPEv1i64 FPR64:$Rn)>;
def : Pat<(f32 (int_arm64_neon_frecpx (f32 FPR32:$Rn))),
(FRECPXv1i32 FPR32:$Rn)>;
def : Pat<(f64 (int_arm64_neon_frecpx (f64 FPR64:$Rn))),
(FRECPXv1i64 FPR64:$Rn)>;
def : Pat<(f32 (int_arm64_neon_frsqrte (f32 FPR32:$Rn))),
(FRSQRTEv1i32 FPR32:$Rn)>;
def : Pat<(f64 (int_arm64_neon_frsqrte (f64 FPR64:$Rn))),
(FRSQRTEv1i64 FPR64:$Rn)>;
def : Pat<(v1f64 (int_arm64_neon_frsqrte (v1f64 FPR64:$Rn))),
(FRSQRTEv1i64 FPR64:$Rn)>;
// If an integer is about to be converted to a floating point value,
// just load it on the floating point unit.
// Here are the patterns for 8 and 16-bits to float.
// 8-bits -> float.
def : Pat <(f32 (uint_to_fp (i32 (zextloadi8 ro_indexed8:$addr)))),
(UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
(LDRBro ro_indexed8:$addr), bsub))>;
def : Pat <(f32 (uint_to_fp (i32 (zextloadi8 am_indexed8:$addr)))),
(UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
(LDRBui am_indexed8:$addr), bsub))>;
def : Pat <(f32 (uint_to_fp (i32 (zextloadi8 am_unscaled8:$addr)))),
(UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
(LDURBi am_unscaled8:$addr), bsub))>;
// 16-bits -> float.
def : Pat <(f32 (uint_to_fp (i32 (zextloadi16 ro_indexed16:$addr)))),
(UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
(LDRHro ro_indexed16:$addr), hsub))>;
def : Pat <(f32 (uint_to_fp (i32 (zextloadi16 am_indexed16:$addr)))),
(UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
(LDRHui am_indexed16:$addr), hsub))>;
def : Pat <(f32 (uint_to_fp (i32 (zextloadi16 am_unscaled16:$addr)))),
(UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
(LDURHi am_unscaled16:$addr), hsub))>;
// 32-bits are handled in target specific dag combine:
// performIntToFpCombine.
// 64-bits integer to 32-bits floating point, not possible with
// UCVTF on floating point registers (both source and destination
// must have the same size).
// Here are the patterns for 8, 16, 32, and 64-bits to double.
// 8-bits -> double.
def : Pat <(f64 (uint_to_fp (i32 (zextloadi8 ro_indexed8:$addr)))),
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRBro ro_indexed8:$addr), bsub))>;
def : Pat <(f64 (uint_to_fp (i32 (zextloadi8 am_indexed8:$addr)))),
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRBui am_indexed8:$addr), bsub))>;
def : Pat <(f64 (uint_to_fp (i32 (zextloadi8 am_unscaled8:$addr)))),
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDURBi am_unscaled8:$addr), bsub))>;
// 16-bits -> double.
def : Pat <(f64 (uint_to_fp (i32 (zextloadi16 ro_indexed16:$addr)))),
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRHro ro_indexed16:$addr), hsub))>;
def : Pat <(f64 (uint_to_fp (i32 (zextloadi16 am_indexed16:$addr)))),
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRHui am_indexed16:$addr), hsub))>;
def : Pat <(f64 (uint_to_fp (i32 (zextloadi16 am_unscaled16:$addr)))),
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDURHi am_unscaled16:$addr), hsub))>;
// 32-bits -> double.
def : Pat <(f64 (uint_to_fp (i32 (load ro_indexed32:$addr)))),
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRSro ro_indexed32:$addr), ssub))>;
def : Pat <(f64 (uint_to_fp (i32 (load am_indexed32:$addr)))),
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRSui am_indexed32:$addr), ssub))>;
def : Pat <(f64 (uint_to_fp (i32 (load am_unscaled32:$addr)))),
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDURSi am_unscaled32:$addr), ssub))>;
// 64-bits -> double are handled in target specific dag combine:
// performIntToFpCombine.
//===----------------------------------------------------------------------===//
// Advanced SIMD three different-sized vector instructions.
//===----------------------------------------------------------------------===//
defm ADDHN : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_arm64_neon_addhn>;
defm SUBHN : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_arm64_neon_subhn>;
defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_arm64_neon_raddhn>;
defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_arm64_neon_rsubhn>;
defm PMULL : SIMDDifferentThreeVectorBD<0,0b1110,"pmull",int_arm64_neon_pmull>;
defm SABAL : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal",
int_arm64_neon_sabd>;
defm SABDL : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl",
int_arm64_neon_sabd>;
defm SADDL : SIMDLongThreeVectorBHS< 0, 0b0000, "saddl",
BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>;
defm SADDW : SIMDWideThreeVectorBHS< 0, 0b0001, "saddw",
BinOpFrag<(add node:$LHS, (sext node:$RHS))>>;
defm SMLAL : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal",
TriOpFrag<(add node:$LHS, (int_arm64_neon_smull node:$MHS, node:$RHS))>>;
defm SMLSL : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl",
TriOpFrag<(sub node:$LHS, (int_arm64_neon_smull node:$MHS, node:$RHS))>>;
defm SMULL : SIMDLongThreeVectorBHS<0, 0b1100, "smull", int_arm64_neon_smull>;
defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal",
int_arm64_neon_sqadd>;
defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl",
int_arm64_neon_sqsub>;
defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull",
int_arm64_neon_sqdmull>;
defm SSUBL : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl",
BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>;
defm SSUBW : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw",
BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>;
defm UABAL : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal",
int_arm64_neon_uabd>;
defm UABDL : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl",
int_arm64_neon_uabd>;
defm UADDL : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl",
BinOpFrag<(add (zext node:$LHS), (zext node:$RHS))>>;
defm UADDW : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw",
BinOpFrag<(add node:$LHS, (zext node:$RHS))>>;
defm UMLAL : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal",
TriOpFrag<(add node:$LHS, (int_arm64_neon_umull node:$MHS, node:$RHS))>>;
defm UMLSL : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl",
TriOpFrag<(sub node:$LHS, (int_arm64_neon_umull node:$MHS, node:$RHS))>>;
defm UMULL : SIMDLongThreeVectorBHS<1, 0b1100, "umull", int_arm64_neon_umull>;
defm USUBL : SIMDLongThreeVectorBHS<1, 0b0010, "usubl",
BinOpFrag<(sub (zext node:$LHS), (zext node:$RHS))>>;
defm USUBW : SIMDWideThreeVectorBHS< 1, 0b0011, "usubw",
BinOpFrag<(sub node:$LHS, (zext node:$RHS))>>;
// Patterns for 64-bit pmull
def : Pat<(int_arm64_neon_pmull64 V64:$Rn, V64:$Rm),
(PMULLv1i64 V64:$Rn, V64:$Rm)>;
def : Pat<(int_arm64_neon_pmull64 (vector_extract (v2i64 V128:$Rn), (i64 1)),
(vector_extract (v2i64 V128:$Rm), (i64 1))),
(PMULLv2i64 V128:$Rn, V128:$Rm)>;
// CodeGen patterns for addhn and subhn instructions, which can actually be
// written in LLVM IR without too much difficulty.
// ADDHN
def : Pat<(v8i8 (trunc (v8i16 (ARM64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))),
(ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
def : Pat<(v4i16 (trunc (v4i32 (ARM64vlshr (add V128:$Rn, V128:$Rm),
(i32 16))))),
(ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
def : Pat<(v2i32 (trunc (v2i64 (ARM64vlshr (add V128:$Rn, V128:$Rm),
(i32 32))))),
(ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v8i8 V64:$Rd),
(trunc (v8i16 (ARM64vlshr (add V128:$Rn, V128:$Rm),
(i32 8))))),
(ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v4i16 V64:$Rd),
(trunc (v4i32 (ARM64vlshr (add V128:$Rn, V128:$Rm),
(i32 16))))),
(ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v2i32 V64:$Rd),
(trunc (v2i64 (ARM64vlshr (add V128:$Rn, V128:$Rm),
(i32 32))))),
(ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
V128:$Rn, V128:$Rm)>;
// SUBHN
def : Pat<(v8i8 (trunc (v8i16 (ARM64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))),
(SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
def : Pat<(v4i16 (trunc (v4i32 (ARM64vlshr (sub V128:$Rn, V128:$Rm),
(i32 16))))),
(SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
def : Pat<(v2i32 (trunc (v2i64 (ARM64vlshr (sub V128:$Rn, V128:$Rm),
(i32 32))))),
(SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v8i8 V64:$Rd),
(trunc (v8i16 (ARM64vlshr (sub V128:$Rn, V128:$Rm),
(i32 8))))),
(SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v4i16 V64:$Rd),
(trunc (v4i32 (ARM64vlshr (sub V128:$Rn, V128:$Rm),
(i32 16))))),
(SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v2i32 V64:$Rd),
(trunc (v2i64 (ARM64vlshr (sub V128:$Rn, V128:$Rm),
(i32 32))))),
(SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
V128:$Rn, V128:$Rm)>;
//----------------------------------------------------------------------------
// AdvSIMD bitwise extract from vector instruction.
//----------------------------------------------------------------------------
defm EXT : SIMDBitwiseExtract<"ext">;
def : Pat<(v4i16 (ARM64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
(EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
def : Pat<(v8i16 (ARM64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
(EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
def : Pat<(v2i32 (ARM64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
(EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
def : Pat<(v2f32 (ARM64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
(EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
def : Pat<(v4i32 (ARM64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
(EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
def : Pat<(v4f32 (ARM64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
(EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
def : Pat<(v2i64 (ARM64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
(EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
def : Pat<(v2f64 (ARM64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
(EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
// We use EXT to handle extract_subvector to copy the upper 64-bits of a
// 128-bit vector.
def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 8))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 4))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 2))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 1))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 2))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 1))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
//----------------------------------------------------------------------------
// AdvSIMD zip vector
//----------------------------------------------------------------------------
defm TRN1 : SIMDZipVector<0b010, "trn1", ARM64trn1>;
defm TRN2 : SIMDZipVector<0b110, "trn2", ARM64trn2>;
defm UZP1 : SIMDZipVector<0b001, "uzp1", ARM64uzp1>;
defm UZP2 : SIMDZipVector<0b101, "uzp2", ARM64uzp2>;
defm ZIP1 : SIMDZipVector<0b011, "zip1", ARM64zip1>;
defm ZIP2 : SIMDZipVector<0b111, "zip2", ARM64zip2>;
//----------------------------------------------------------------------------
// AdvSIMD TBL/TBX instructions
//----------------------------------------------------------------------------
defm TBL : SIMDTableLookup< 0, "tbl">;
defm TBX : SIMDTableLookupTied<1, "tbx">;
def : Pat<(v8i8 (int_arm64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
(TBLv8i8One VecListOne128:$Rn, V64:$Ri)>;
def : Pat<(v16i8 (int_arm64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
(TBLv16i8One V128:$Ri, V128:$Rn)>;
def : Pat<(v8i8 (int_arm64_neon_tbx1 (v8i8 V64:$Rd),
(v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
(TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>;
def : Pat<(v16i8 (int_arm64_neon_tbx1 (v16i8 V128:$Rd),
(v16i8 V128:$Ri), (v16i8 V128:$Rn))),
(TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>;
//----------------------------------------------------------------------------
// AdvSIMD scalar CPY instruction
//----------------------------------------------------------------------------
defm CPY : SIMDScalarCPY<"cpy">;
//----------------------------------------------------------------------------
// AdvSIMD scalar pairwise instructions
//----------------------------------------------------------------------------
defm ADDP : SIMDPairwiseScalarD<0, 0b11011, "addp">;
defm FADDP : SIMDPairwiseScalarSD<1, 0, 0b01101, "faddp">;
defm FMAXNMP : SIMDPairwiseScalarSD<1, 0, 0b01100, "fmaxnmp">;
defm FMAXP : SIMDPairwiseScalarSD<1, 0, 0b01111, "fmaxp">;
defm FMINNMP : SIMDPairwiseScalarSD<1, 1, 0b01100, "fminnmp">;
defm FMINP : SIMDPairwiseScalarSD<1, 1, 0b01111, "fminp">;
def : Pat<(i64 (int_arm64_neon_saddv (v2i64 V128:$Rn))),
(ADDPv2i64p V128:$Rn)>;
def : Pat<(i64 (int_arm64_neon_uaddv (v2i64 V128:$Rn))),
(ADDPv2i64p V128:$Rn)>;
def : Pat<(f32 (int_arm64_neon_faddv (v2f32 V64:$Rn))),
(FADDPv2i32p V64:$Rn)>;
def : Pat<(f32 (int_arm64_neon_faddv (v4f32 V128:$Rn))),
(FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>;
def : Pat<(f64 (int_arm64_neon_faddv (v2f64 V128:$Rn))),
(FADDPv2i64p V128:$Rn)>;
def : Pat<(f32 (int_arm64_neon_fmaxnmv (v2f32 V64:$Rn))),
(FMAXNMPv2i32p V64:$Rn)>;
def : Pat<(f64 (int_arm64_neon_fmaxnmv (v2f64 V128:$Rn))),
(FMAXNMPv2i64p V128:$Rn)>;
def : Pat<(f32 (int_arm64_neon_fmaxv (v2f32 V64:$Rn))),
(FMAXPv2i32p V64:$Rn)>;
def : Pat<(f64 (int_arm64_neon_fmaxv (v2f64 V128:$Rn))),
(FMAXPv2i64p V128:$Rn)>;
def : Pat<(f32 (int_arm64_neon_fminnmv (v2f32 V64:$Rn))),
(FMINNMPv2i32p V64:$Rn)>;
def : Pat<(f64 (int_arm64_neon_fminnmv (v2f64 V128:$Rn))),
(FMINNMPv2i64p V128:$Rn)>;
def : Pat<(f32 (int_arm64_neon_fminv (v2f32 V64:$Rn))),
(FMINPv2i32p V64:$Rn)>;
def : Pat<(f64 (int_arm64_neon_fminv (v2f64 V128:$Rn))),
(FMINPv2i64p V128:$Rn)>;
//----------------------------------------------------------------------------
// AdvSIMD INS/DUP instructions
//----------------------------------------------------------------------------
def DUPv8i8gpr : SIMDDupFromMain<0, 0b00001, ".8b", v8i8, V64, GPR32>;
def DUPv16i8gpr : SIMDDupFromMain<1, 0b00001, ".16b", v16i8, V128, GPR32>;
def DUPv4i16gpr : SIMDDupFromMain<0, 0b00010, ".4h", v4i16, V64, GPR32>;
def DUPv8i16gpr : SIMDDupFromMain<1, 0b00010, ".8h", v8i16, V128, GPR32>;
def DUPv2i32gpr : SIMDDupFromMain<0, 0b00100, ".2s", v2i32, V64, GPR32>;
def DUPv4i32gpr : SIMDDupFromMain<1, 0b00100, ".4s", v4i32, V128, GPR32>;
def DUPv2i64gpr : SIMDDupFromMain<1, 0b01000, ".2d", v2i64, V128, GPR64>;
def DUPv2i64lane : SIMDDup64FromElement;
def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>;
def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>;
def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>;
def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>;
def DUPv8i8lane : SIMDDup8FromElement <0, ".8b", v8i8, V64>;
def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>;
def : Pat<(v2f32 (ARM64dup (f32 FPR32:$Rn))),
(v2f32 (DUPv2i32lane
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
(i64 0)))>;
def : Pat<(v4f32 (ARM64dup (f32 FPR32:$Rn))),
(v4f32 (DUPv4i32lane
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
(i64 0)))>;
def : Pat<(v2f64 (ARM64dup (f64 FPR64:$Rn))),
(v2f64 (DUPv2i64lane
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub),
(i64 0)))>;
def : Pat<(v2f32 (ARM64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
(DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>;
def : Pat<(v4f32 (ARM64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
(DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>;
def : Pat<(v2f64 (ARM64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)),
(DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>;
// If there's an (ARM64dup (vector_extract ...) ...), we can use a duplane
// instruction even if the types don't match: we just have to remap the lane
// carefully. N.b. this trick only applies to truncations.
def VecIndex_x2 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(2 * N->getZExtValue(), MVT::i64);
}]>;
def VecIndex_x4 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(4 * N->getZExtValue(), MVT::i64);
}]>;
def VecIndex_x8 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(8 * N->getZExtValue(), MVT::i64);
}]>;
multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT,
ValueType Src128VT, ValueType ScalVT,
Instruction DUP, SDNodeXForm IdxXFORM> {
def : Pat<(ResVT (ARM64dup (ScalVT (vector_extract (Src128VT V128:$Rn),
imm:$idx)))),
(DUP V128:$Rn, (IdxXFORM imm:$idx))>;
def : Pat<(ResVT (ARM64dup (ScalVT (vector_extract (Src64VT V64:$Rn),
imm:$idx)))),
(DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
}
defm : DUPWithTruncPats<v8i8, v4i16, v8i16, i32, DUPv8i8lane, VecIndex_x2>;
defm : DUPWithTruncPats<v8i8, v2i32, v4i32, i32, DUPv8i8lane, VecIndex_x4>;
defm : DUPWithTruncPats<v4i16, v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>;
defm : DUPWithTruncPats<v16i8, v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>;
defm : DUPWithTruncPats<v16i8, v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>;
defm : DUPWithTruncPats<v8i16, v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>;
multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP,
SDNodeXForm IdxXFORM> {
def : Pat<(ResVT (ARM64dup (i32 (trunc (vector_extract (v2i64 V128:$Rn),
imm:$idx))))),
(DUP V128:$Rn, (IdxXFORM imm:$idx))>;
def : Pat<(ResVT (ARM64dup (i32 (trunc (vector_extract (v1i64 V64:$Rn),
imm:$idx))))),
(DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
}
defm : DUPWithTrunci64Pats<v8i8, DUPv8i8lane, VecIndex_x8>;
defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane, VecIndex_x4>;
defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane, VecIndex_x2>;
defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>;
defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>;
defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>;
// SMOV and UMOV definitions, with some extra patterns for convenience
defm SMOV : SMov;
defm UMOV : UMov;
def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
(i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
(i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
(i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
(i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
(i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))),
(i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>;
// Extracting i8 or i16 elements will have the zero-extend transformed to
// an 'and' mask by type legalization since neither i8 nor i16 are legal types
// for ARM64. Match these patterns here since UMOV already zeroes out the high
// bits of the destination register.
def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx),
(i32 0xff)),
(i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>;
def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),
(i32 0xffff)),
(i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>;
defm INS : SIMDIns;
def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)),
(SUBREG_TO_REG (i32 0),
(f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)),
(SUBREG_TO_REG (i32 0),
(f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)),
(SUBREG_TO_REG (i32 0),
(f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)),
(SUBREG_TO_REG (i32 0),
(f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))),
(v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
(i32 FPR32:$Rn), ssub))>;
def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))),
(v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
(i32 FPR32:$Rn), ssub))>;
def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))),
(v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
(i64 FPR64:$Rn), dsub))>;
def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))),
(INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))),
(INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))),
(INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>;
def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn),
(f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
(EXTRACT_SUBREG
(INSvi32lane
(v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)),
VectorIndexS:$imm,
(v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
(i64 0)),
dsub)>;
def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn),
(f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
(INSvi32lane
V128:$Rn, VectorIndexS:$imm,
(v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
(i64 0))>;
def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn),
(f64 FPR64:$Rm), (i64 VectorIndexD:$imm))),
(INSvi64lane
V128:$Rn, VectorIndexD:$imm,
(v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)),
(i64 0))>;
// Copy an element at a constant index in one vector into a constant indexed
// element of another.
// FIXME refactor to a shared class/dev parameterized on vector type, vector
// index type and INS extension
def : Pat<(v16i8 (int_arm64_neon_vcopy_lane
(v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs),
VectorIndexB:$idx2)),
(v16i8 (INSvi8lane
V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2)
)>;
def : Pat<(v8i16 (int_arm64_neon_vcopy_lane
(v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs),
VectorIndexH:$idx2)),
(v8i16 (INSvi16lane
V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2)
)>;
def : Pat<(v4i32 (int_arm64_neon_vcopy_lane
(v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs),
VectorIndexS:$idx2)),
(v4i32 (INSvi32lane
V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2)
)>;
def : Pat<(v2i64 (int_arm64_neon_vcopy_lane
(v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs),
VectorIndexD:$idx2)),
(v2i64 (INSvi64lane
V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2)
)>;
multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64,
ValueType VTScal, Instruction INS> {
def : Pat<(VT128 (vector_insert V128:$src,
(VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
imm:$Immd)),
(INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>;
def : Pat<(VT128 (vector_insert V128:$src,
(VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
imm:$Immd)),
(INS V128:$src, imm:$Immd,
(SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>;
def : Pat<(VT64 (vector_insert V64:$src,
(VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
imm:$Immd)),
(EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub),
imm:$Immd, V128:$Rn, imm:$Immn),
dsub)>;
def : Pat<(VT64 (vector_insert V64:$src,
(VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
imm:$Immd)),
(EXTRACT_SUBREG
(INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd,
(SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn),
dsub)>;
}
defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>;
defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>;
defm : Neon_INS_elt_pattern<v16i8, v8i8, i32, INSvi8lane>;
defm : Neon_INS_elt_pattern<v8i16, v4i16, i32, INSvi16lane>;
defm : Neon_INS_elt_pattern<v4i32, v2i32, i32, INSvi32lane>;
defm : Neon_INS_elt_pattern<v2i64, v1i64, i64, INSvi32lane>;
// Floating point vector extractions are codegen'd as either a sequence of
// subregister extractions, possibly fed by an INS if the lane number is
// anything other than zero.
def : Pat<(vector_extract (v2f64 V128:$Rn), 0),
(f64 (EXTRACT_SUBREG V128:$Rn, dsub))>;
def : Pat<(vector_extract (v4f32 V128:$Rn), 0),
(f32 (EXTRACT_SUBREG V128:$Rn, ssub))>;
def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx),
(f64 (EXTRACT_SUBREG
(INSvi64lane (v2f64 (IMPLICIT_DEF)), 0,
V128:$Rn, VectorIndexD:$idx),
dsub))>;
def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx),
(f32 (EXTRACT_SUBREG
(INSvi32lane (v4f32 (IMPLICIT_DEF)), 0,
V128:$Rn, VectorIndexS:$idx),
ssub))>;
// All concat_vectors operations are canonicalised to act on i64 vectors for
// ARM64. In the general case we need an instruction, which had just as well be
// INS.
class ConcatPat<ValueType DstTy, ValueType SrcTy>
: Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)),
(INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1,
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>;
def : ConcatPat<v2i64, v1i64>;
def : ConcatPat<v2f64, v1f64>;
def : ConcatPat<v4i32, v2i32>;
def : ConcatPat<v4f32, v2f32>;
def : ConcatPat<v8i16, v4i16>;
def : ConcatPat<v16i8, v8i8>;
// If the high lanes are undef, though, we can just ignore them:
class ConcatUndefPat<ValueType DstTy, ValueType SrcTy>
: Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)),
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>;
def : ConcatUndefPat<v2i64, v1i64>;
def : ConcatUndefPat<v2f64, v1f64>;
def : ConcatUndefPat<v4i32, v2i32>;
def : ConcatUndefPat<v4f32, v2f32>;
def : ConcatUndefPat<v8i16, v4i16>;
def : ConcatUndefPat<v16i8, v8i8>;
//----------------------------------------------------------------------------
// AdvSIMD across lanes instructions
//----------------------------------------------------------------------------
defm ADDV : SIMDAcrossLanesBHS<0, 0b11011, "addv">;
defm SMAXV : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">;
defm SMINV : SIMDAcrossLanesBHS<0, 0b11010, "sminv">;
defm UMAXV : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">;
defm UMINV : SIMDAcrossLanesBHS<1, 0b11010, "uminv">;
defm SADDLV : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">;
defm UADDLV : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">;
defm FMAXNMV : SIMDAcrossLanesS<0b01100, 0, "fmaxnmv", int_arm64_neon_fmaxnmv>;
defm FMAXV : SIMDAcrossLanesS<0b01111, 0, "fmaxv", int_arm64_neon_fmaxv>;
defm FMINNMV : SIMDAcrossLanesS<0b01100, 1, "fminnmv", int_arm64_neon_fminnmv>;
defm FMINV : SIMDAcrossLanesS<0b01111, 1, "fminv", int_arm64_neon_fminv>;
multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc, Intrinsic intOp> {
// If there is a sign extension after this intrinsic, consume it as smov already
// performed it
def : Pat<(i32 (sext_inreg (i32 (intOp (v8i8 V64:$Rn))), i8)),
(i32 (SMOVvi8to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
(i64 0)))>;
def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
(i32 (SMOVvi8to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
(i64 0)))>;
// If there is a sign extension after this intrinsic, consume it as smov already
// performed it
def : Pat<(i32 (sext_inreg (i32 (intOp (v16i8 V128:$Rn))), i8)),
(i32 (SMOVvi8to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
(i64 0)))>;
def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
(i32 (SMOVvi8to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
(i64 0)))>;
// If there is a sign extension after this intrinsic, consume it as smov already
// performed it
def : Pat<(i32 (sext_inreg (i32 (intOp (v4i16 V64:$Rn))), i16)),
(i32 (SMOVvi16to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
(i64 0)))>;
def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
(i32 (SMOVvi16to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
(i64 0)))>;
// If there is a sign extension after this intrinsic, consume it as smov already
// performed it
def : Pat<(i32 (sext_inreg (i32 (intOp (v8i16 V128:$Rn))), i16)),
(i32 (SMOVvi16to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
(i64 0)))>;
def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
(i32 (SMOVvi16to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
(i64 0)))>;
def : Pat<(i32 (intOp (v4i32 V128:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub),
ssub))>;
}
multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc, Intrinsic intOp> {
// If there is a masking operation keeping only what has been actually
// generated, consume it.
def : Pat<(i32 (and (i32 (intOp (v8i8 V64:$Rn))), maski8_or_more)),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
ssub))>;
def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
ssub))>;
// If there is a masking operation keeping only what has been actually
// generated, consume it.
def : Pat<(i32 (and (i32 (intOp (v16i8 V128:$Rn))), maski8_or_more)),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
ssub))>;
def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
ssub))>;
// If there is a masking operation keeping only what has been actually
// generated, consume it.
def : Pat<(i32 (and (i32 (intOp (v4i16 V64:$Rn))), maski16_or_more)),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
ssub))>;
def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
ssub))>;
// If there is a masking operation keeping only what has been actually
// generated, consume it.
def : Pat<(i32 (and (i32 (intOp (v8i16 V128:$Rn))), maski16_or_more)),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
ssub))>;
def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
ssub))>;
def : Pat<(i32 (intOp (v4i32 V128:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub),
ssub))>;
}
multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> {
def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
(i32 (SMOVvi16to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
(i64 0)))>;
def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
(i32 (SMOVvi16to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
(i64 0)))>;
def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
ssub))>;
def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
ssub))>;
def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
(i64 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
dsub))>;
}
multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc,
Intrinsic intOp> {
def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
ssub))>;
def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
ssub))>;
def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
ssub))>;
def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
ssub))>;
def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
(i64 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
dsub))>;
}
defm : SIMDAcrossLanesSignedIntrinsic<"ADDV", int_arm64_neon_saddv>;
// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
def : Pat<(i32 (int_arm64_neon_saddv (v2i32 V64:$Rn))),
(EXTRACT_SUBREG (ADDPv2i32 V64:$Rn, V64:$Rn), ssub)>;
defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", int_arm64_neon_uaddv>;
// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
def : Pat<(i32 (int_arm64_neon_uaddv (v2i32 V64:$Rn))),
(EXTRACT_SUBREG (ADDPv2i32 V64:$Rn, V64:$Rn), ssub)>;
defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", int_arm64_neon_smaxv>;
def : Pat<(i32 (int_arm64_neon_smaxv (v2i32 V64:$Rn))),
(EXTRACT_SUBREG (SMAXPv2i32 V64:$Rn, V64:$Rn), ssub)>;
defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", int_arm64_neon_sminv>;
def : Pat<(i32 (int_arm64_neon_sminv (v2i32 V64:$Rn))),
(EXTRACT_SUBREG (SMINPv2i32 V64:$Rn, V64:$Rn), ssub)>;
defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", int_arm64_neon_umaxv>;
def : Pat<(i32 (int_arm64_neon_umaxv (v2i32 V64:$Rn))),
(EXTRACT_SUBREG (UMAXPv2i32 V64:$Rn, V64:$Rn), ssub)>;
defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", int_arm64_neon_uminv>;
def : Pat<(i32 (int_arm64_neon_uminv (v2i32 V64:$Rn))),
(EXTRACT_SUBREG (UMINPv2i32 V64:$Rn, V64:$Rn), ssub)>;
defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_arm64_neon_saddlv>;
defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_arm64_neon_uaddlv>;
// The vaddlv_s32 intrinsic gets mapped to SADDLP.
def : Pat<(i64 (int_arm64_neon_saddlv (v2i32 V64:$Rn))),
(i64 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(SADDLPv2i32_v1i64 V64:$Rn), dsub),
dsub))>;
// The vaddlv_u32 intrinsic gets mapped to UADDLP.
def : Pat<(i64 (int_arm64_neon_uaddlv (v2i32 V64:$Rn))),
(i64 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(UADDLPv2i32_v1i64 V64:$Rn), dsub),
dsub))>;
//------------------------------------------------------------------------------
// AdvSIMD modified immediate instructions
//------------------------------------------------------------------------------
// AdvSIMD BIC
defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", ARM64bici>;
// AdvSIMD ORR
defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", ARM64orri>;
// AdvSIMD FMOV
def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0b1111, V128, fpimm8,
"fmov", ".2d",
[(set (v2f64 V128:$Rd), (ARM64fmov imm0_255:$imm8))]>;
def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0b1111, V64, fpimm8,
"fmov", ".2s",
[(set (v2f32 V64:$Rd), (ARM64fmov imm0_255:$imm8))]>;
def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0b1111, V128, fpimm8,
"fmov", ".4s",
[(set (v4f32 V128:$Rd), (ARM64fmov imm0_255:$imm8))]>;
// AdvSIMD MOVI
// EDIT byte mask: scalar
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
def MOVID : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi",
[(set FPR64:$Rd, simdimmtype10:$imm8)]>;
// The movi_edit node has the immediate value already encoded, so we use
// a plain imm0_255 here.
def : Pat<(f64 (ARM64movi_edit imm0_255:$shift)),
(MOVID imm0_255:$shift)>;
def : Pat<(v1i64 immAllZerosV), (MOVID (i32 0))>;
def : Pat<(v2i32 immAllZerosV), (MOVID (i32 0))>;
def : Pat<(v4i16 immAllZerosV), (MOVID (i32 0))>;
def : Pat<(v8i8 immAllZerosV), (MOVID (i32 0))>;
def : Pat<(v1i64 immAllOnesV), (MOVID (i32 255))>;
def : Pat<(v2i32 immAllOnesV), (MOVID (i32 255))>;
def : Pat<(v4i16 immAllOnesV), (MOVID (i32 255))>;
def : Pat<(v8i8 immAllOnesV), (MOVID (i32 255))>;
// EDIT byte mask: 2d
// The movi_edit node has the immediate value already encoded, so we use
// a plain imm0_255 in the pattern
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
def MOVIv2d_ns : SIMDModifiedImmVectorNoShift<1, 1, 0b1110, V128,
simdimmtype10,
"movi", ".2d",
[(set (v2i64 V128:$Rd), (ARM64movi_edit imm0_255:$imm8))]>;
// Use movi.2d to materialize 0.0 if the HW does zero-cycle zeroing.
// Complexity is added to break a tie with a plain MOVI.
let AddedComplexity = 1 in {
def : Pat<(f32 fpimm0),
(f32 (EXTRACT_SUBREG (v2i64 (MOVIv2d_ns (i32 0))), ssub))>,
Requires<[HasZCZ]>;
def : Pat<(f64 fpimm0),
(f64 (EXTRACT_SUBREG (v2i64 (MOVIv2d_ns (i32 0))), dsub))>,
Requires<[HasZCZ]>;
}
def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>;
def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>;
def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>;
def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>;
def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>;
def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>;
def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>;
def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>;
def : Pat<(v2f64 (ARM64dup (f64 fpimm0))), (MOVIv2d_ns (i32 0))>;
def : Pat<(v4f32 (ARM64dup (f32 fpimm0))), (MOVIv2d_ns (i32 0))>;
// EDIT per word & halfword: 2s, 4h, 4s, & 8h
defm MOVI : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">;
def : Pat<(v2i32 (ARM64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
(MOVIv2i32 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v4i32 (ARM64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
(MOVIv4i32 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v4i16 (ARM64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
(MOVIv4i16 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v8i16 (ARM64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
(MOVIv8i16 imm0_255:$imm8, imm:$shift)>;
// EDIT per word: 2s & 4s with MSL shifter
def MOVIv2s_msl : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s",
[(set (v2i32 V64:$Rd),
(ARM64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
def MOVIv4s_msl : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s",
[(set (v4i32 V128:$Rd),
(ARM64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
// Per byte: 8b & 16b
def MOVIv8b_ns : SIMDModifiedImmVectorNoShift<0, 0, 0b1110, V64, imm0_255,
"movi", ".8b",
[(set (v8i8 V64:$Rd), (ARM64movi imm0_255:$imm8))]>;
def MOVIv16b_ns : SIMDModifiedImmVectorNoShift<1, 0, 0b1110, V128, imm0_255,
"movi", ".16b",
[(set (v16i8 V128:$Rd), (ARM64movi imm0_255:$imm8))]>;
// AdvSIMD MVNI
// EDIT per word & halfword: 2s, 4h, 4s, & 8h
defm MVNI : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">;
def : Pat<(v2i32 (ARM64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
(MVNIv2i32 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v4i32 (ARM64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
(MVNIv4i32 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v4i16 (ARM64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
(MVNIv4i16 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v8i16 (ARM64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
(MVNIv8i16 imm0_255:$imm8, imm:$shift)>;
// EDIT per word: 2s & 4s with MSL shifter
def MVNIv2s_msl : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s",
[(set (v2i32 V64:$Rd),
(ARM64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
def MVNIv4s_msl : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s",
[(set (v4i32 V128:$Rd),
(ARM64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
//----------------------------------------------------------------------------
// AdvSIMD indexed element
//----------------------------------------------------------------------------
let neverHasSideEffects = 1 in {
defm FMLA : SIMDFPIndexedSDTied<0, 0b0001, "fmla">;
defm FMLS : SIMDFPIndexedSDTied<0, 0b0101, "fmls">;
}
// NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the
// instruction expects the addend first, while the intrinsic expects it last.
// On the other hand, there are quite a few valid combinatorial options due to
// the commutativity of multiplication and the fact that (-x) * y = x * (-y).
defm : SIMDFPIndexedSDTiedPatterns<"FMLA",
TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)>>;
defm : SIMDFPIndexedSDTiedPatterns<"FMLA",
TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)>>;
defm : SIMDFPIndexedSDTiedPatterns<"FMLS",
TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
defm : SIMDFPIndexedSDTiedPatterns<"FMLS",
TriOpFrag<(fma node:$RHS, (fneg node:$MHS), node:$LHS)> >;
defm : SIMDFPIndexedSDTiedPatterns<"FMLS",
TriOpFrag<(fma (fneg node:$RHS), node:$MHS, node:$LHS)> >;
defm : SIMDFPIndexedSDTiedPatterns<"FMLS",
TriOpFrag<(fma (fneg node:$MHS), node:$RHS, node:$LHS)> >;
multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> {
// 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit
// and DUP scalar.
def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
(ARM64duplane32 (v4f32 (fneg V128:$Rm)),
VectorIndexS:$idx))),
(FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>;
def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
(v2f32 (ARM64duplane32
(v4f32 (insert_subvector undef,
(v2f32 (fneg V64:$Rm)),
(i32 0))),
VectorIndexS:$idx)))),
(FMLSv2i32_indexed V64:$Rd, V64:$Rn,
(SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
VectorIndexS:$idx)>;
def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
(ARM64dup (f32 (fneg FPR32Op:$Rm))))),
(FMLSv2i32_indexed V64:$Rd, V64:$Rn,
(SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
// 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit
// and DUP scalar.
def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
(ARM64duplane32 (v4f32 (fneg V128:$Rm)),
VectorIndexS:$idx))),
(FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm,
VectorIndexS:$idx)>;
def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
(v4f32 (ARM64duplane32
(v4f32 (insert_subvector undef,
(v2f32 (fneg V64:$Rm)),
(i32 0))),
VectorIndexS:$idx)))),
(FMLSv4i32_indexed V128:$Rd, V128:$Rn,
(SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
VectorIndexS:$idx)>;
def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
(ARM64dup (f32 (fneg FPR32Op:$Rm))))),
(FMLSv4i32_indexed V128:$Rd, V128:$Rn,
(SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
// 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar
// (DUPLANE from 64-bit would be trivial).
def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
(ARM64duplane64 (v2f64 (fneg V128:$Rm)),
VectorIndexD:$idx))),
(FMLSv2i64_indexed
V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
(ARM64dup (f64 (fneg FPR64Op:$Rm))))),
(FMLSv2i64_indexed V128:$Rd, V128:$Rn,
(SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>;
// 2 variants for 32-bit scalar version: extract from .2s or from .4s
def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
(vector_extract (v4f32 (fneg V128:$Rm)),
VectorIndexS:$idx))),
(FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
V128:$Rm, VectorIndexS:$idx)>;
def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
(vector_extract (v2f32 (fneg V64:$Rm)),
VectorIndexS:$idx))),
(FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
(SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>;
// 1 variant for 64-bit scalar version: extract from .1d or from .2d
def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn),
(vector_extract (v2f64 (fneg V128:$Rm)),
VectorIndexS:$idx))),
(FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn,
V128:$Rm, VectorIndexS:$idx)>;
}
defm : FMLSIndexedAfterNegPatterns<
TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
defm : FMLSIndexedAfterNegPatterns<
TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)> >;
defm FMULX : SIMDFPIndexedSD<1, 0b1001, "fmulx", int_arm64_neon_fmulx>;
defm FMUL : SIMDFPIndexedSD<0, 0b1001, "fmul", fmul>;
def : Pat<(v2f32 (fmul V64:$Rn, (ARM64dup (f32 FPR32:$Rm)))),
(FMULv2i32_indexed V64:$Rn,
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
(i64 0))>;
def : Pat<(v4f32 (fmul V128:$Rn, (ARM64dup (f32 FPR32:$Rm)))),
(FMULv4i32_indexed V128:$Rn,
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
(i64 0))>;
def : Pat<(v2f64 (fmul V128:$Rn, (ARM64dup (f64 FPR64:$Rm)))),
(FMULv2i64_indexed V128:$Rn,
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub),
(i64 0))>;
defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_arm64_neon_sqdmulh>;
defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_arm64_neon_sqrdmulh>;
defm MLA : SIMDVectorIndexedHSTied<1, 0b0000, "mla",
TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))>>;
defm MLS : SIMDVectorIndexedHSTied<1, 0b0100, "mls",
TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))>>;
defm MUL : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>;
defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal",
TriOpFrag<(add node:$LHS, (int_arm64_neon_smull node:$MHS, node:$RHS))>>;
defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl",
TriOpFrag<(sub node:$LHS, (int_arm64_neon_smull node:$MHS, node:$RHS))>>;
defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull",
int_arm64_neon_smull>;
defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal",
int_arm64_neon_sqadd>;
defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl",
int_arm64_neon_sqsub>;
defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_arm64_neon_sqdmull>;
defm UMLAL : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal",
TriOpFrag<(add node:$LHS, (int_arm64_neon_umull node:$MHS, node:$RHS))>>;
defm UMLSL : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl",
TriOpFrag<(sub node:$LHS, (int_arm64_neon_umull node:$MHS, node:$RHS))>>;
defm UMULL : SIMDVectorIndexedLongSD<1, 0b1010, "umull",
int_arm64_neon_umull>;
// A scalar sqdmull with the second operand being a vector lane can be
// handled directly with the indexed instruction encoding.
def : Pat<(int_arm64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
(vector_extract (v4i32 V128:$Vm),
VectorIndexS:$idx)),
(SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>;
//----------------------------------------------------------------------------
// AdvSIMD scalar shift instructions
//----------------------------------------------------------------------------
defm FCVTZS : SIMDScalarRShiftSD<0, 0b11111, "fcvtzs">;
defm FCVTZU : SIMDScalarRShiftSD<1, 0b11111, "fcvtzu">;
defm SCVTF : SIMDScalarRShiftSD<0, 0b11100, "scvtf">;
defm UCVTF : SIMDScalarRShiftSD<1, 0b11100, "ucvtf">;
// Codegen patterns for the above. We don't put these directly on the
// instructions because TableGen's type inference can't handle the truth.
// Having the same base pattern for fp <--> int totally freaks it out.
def : Pat<(int_arm64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm),
(FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>;
def : Pat<(int_arm64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm),
(FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>;
def : Pat<(i64 (int_arm64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)),
(FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(i64 (int_arm64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)),
(FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(v1i64 (int_arm64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn),
vecshiftR64:$imm)),
(FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(v1i64 (int_arm64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn),
vecshiftR64:$imm)),
(FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(int_arm64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm),
(SCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
def : Pat<(int_arm64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm),
(UCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
def : Pat<(f64 (int_arm64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
(SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(f64 (int_arm64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
(UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(v1f64 (int_arm64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn),
vecshiftR64:$imm)),
(SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(v1f64 (int_arm64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn),
vecshiftR64:$imm)),
(UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
defm SHL : SIMDScalarLShiftD< 0, 0b01010, "shl", ARM64vshl>;
defm SLI : SIMDScalarLShiftDTied<1, 0b01010, "sli">;
defm SQRSHRN : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn",
int_arm64_neon_sqrshrn>;
defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun",
int_arm64_neon_sqrshrun>;
defm SQSHLU : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", ARM64sqshlui>;
defm SQSHL : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", ARM64sqshli>;
defm SQSHRN : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn",
int_arm64_neon_sqshrn>;
defm SQSHRUN : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun",
int_arm64_neon_sqshrun>;
defm SRI : SIMDScalarRShiftDTied< 1, 0b01000, "sri">;
defm SRSHR : SIMDScalarRShiftD< 0, 0b00100, "srshr", ARM64srshri>;
defm SRSRA : SIMDScalarRShiftDTied< 0, 0b00110, "srsra",
TriOpFrag<(add node:$LHS,
(ARM64srshri node:$MHS, node:$RHS))>>;
defm SSHR : SIMDScalarRShiftD< 0, 0b00000, "sshr", ARM64vashr>;
defm SSRA : SIMDScalarRShiftDTied< 0, 0b00010, "ssra",
TriOpFrag<(add node:$LHS,
(ARM64vashr node:$MHS, node:$RHS))>>;
defm UQRSHRN : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn",
int_arm64_neon_uqrshrn>;
defm UQSHL : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", ARM64uqshli>;
defm UQSHRN : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn",
int_arm64_neon_uqshrn>;
defm URSHR : SIMDScalarRShiftD< 1, 0b00100, "urshr", ARM64urshri>;
defm URSRA : SIMDScalarRShiftDTied< 1, 0b00110, "ursra",
TriOpFrag<(add node:$LHS,
(ARM64urshri node:$MHS, node:$RHS))>>;
defm USHR : SIMDScalarRShiftD< 1, 0b00000, "ushr", ARM64vlshr>;
defm USRA : SIMDScalarRShiftDTied< 1, 0b00010, "usra",
TriOpFrag<(add node:$LHS,
(ARM64vlshr node:$MHS, node:$RHS))>>;
//----------------------------------------------------------------------------
// AdvSIMD vector shift instructions
//----------------------------------------------------------------------------
defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_arm64_neon_vcvtfp2fxs>;
defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_arm64_neon_vcvtfp2fxu>;
defm SCVTF: SIMDVectorRShiftSDToFP<0, 0b11100, "scvtf",
int_arm64_neon_vcvtfxs2fp>;
defm RSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn",
int_arm64_neon_rshrn>;
defm SHL : SIMDVectorLShiftBHSD<0, 0b01010, "shl", ARM64vshl>;
defm SHRN : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn",
BinOpFrag<(trunc (ARM64vashr node:$LHS, node:$RHS))>>;
defm SLI : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", int_arm64_neon_vsli>;
def : Pat<(v1i64 (int_arm64_neon_vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
(i32 vecshiftL64:$imm))),
(SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>;
defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn",
int_arm64_neon_sqrshrn>;
defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun",
int_arm64_neon_sqrshrun>;
defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", ARM64sqshlui>;
defm SQSHL : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", ARM64sqshli>;
defm SQSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn",
int_arm64_neon_sqshrn>;
defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun",
int_arm64_neon_sqshrun>;
defm SRI : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", int_arm64_neon_vsri>;
def : Pat<(v1i64 (int_arm64_neon_vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
(i32 vecshiftR64:$imm))),
(SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>;
defm SRSHR : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", ARM64srshri>;
defm SRSRA : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra",
TriOpFrag<(add node:$LHS,
(ARM64srshri node:$MHS, node:$RHS))> >;
defm SSHLL : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll",
BinOpFrag<(ARM64vshl (sext node:$LHS), node:$RHS)>>;
defm SSHR : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", ARM64vashr>;
defm SSRA : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra",
TriOpFrag<(add node:$LHS, (ARM64vashr node:$MHS, node:$RHS))>>;
defm UCVTF : SIMDVectorRShiftSDToFP<1, 0b11100, "ucvtf",
int_arm64_neon_vcvtfxu2fp>;
defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn",
int_arm64_neon_uqrshrn>;
defm UQSHL : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", ARM64uqshli>;
defm UQSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn",
int_arm64_neon_uqshrn>;
defm URSHR : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", ARM64urshri>;
defm URSRA : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra",
TriOpFrag<(add node:$LHS,
(ARM64urshri node:$MHS, node:$RHS))> >;
defm USHLL : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll",
BinOpFrag<(ARM64vshl (zext node:$LHS), node:$RHS)>>;
defm USHR : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", ARM64vlshr>;
defm USRA : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra",
TriOpFrag<(add node:$LHS, (ARM64vlshr node:$MHS, node:$RHS))> >;
// SHRN patterns for when a logical right shift was used instead of arithmetic
// (the immediate guarantees no sign bits actually end up in the result so it
// doesn't matter).
def : Pat<(v8i8 (trunc (ARM64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))),
(SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>;
def : Pat<(v4i16 (trunc (ARM64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))),
(SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>;
def : Pat<(v2i32 (trunc (ARM64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))),
(SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>;
def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd),
(trunc (ARM64vlshr (v8i16 V128:$Rn),
vecshiftR16Narrow:$imm)))),
(SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
V128:$Rn, vecshiftR16Narrow:$imm)>;
def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd),
(trunc (ARM64vlshr (v4i32 V128:$Rn),
vecshiftR32Narrow:$imm)))),
(SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
V128:$Rn, vecshiftR32Narrow:$imm)>;
def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd),
(trunc (ARM64vlshr (v2i64 V128:$Rn),
vecshiftR64Narrow:$imm)))),
(SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
V128:$Rn, vecshiftR32Narrow:$imm)>;
// Vector sign and zero extensions are implemented with SSHLL and USSHLL.
// Anyexts are implemented as zexts.
def : Pat<(v8i16 (sext (v8i8 V64:$Rn))), (SSHLLv8i8_shift V64:$Rn, (i32 0))>;
def : Pat<(v8i16 (zext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>;
def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>;
def : Pat<(v4i32 (sext (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>;
def : Pat<(v4i32 (zext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
def : Pat<(v2i64 (sext (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>;
def : Pat<(v2i64 (zext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
// Also match an extend from the upper half of a 128 bit source register.
def : Pat<(v8i16 (anyext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
(USHLLv16i8_shift V128:$Rn, (i32 0))>;
def : Pat<(v8i16 (zext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
(USHLLv16i8_shift V128:$Rn, (i32 0))>;
def : Pat<(v8i16 (sext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
(SSHLLv16i8_shift V128:$Rn, (i32 0))>;
def : Pat<(v4i32 (anyext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
(USHLLv8i16_shift V128:$Rn, (i32 0))>;
def : Pat<(v4i32 (zext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
(USHLLv8i16_shift V128:$Rn, (i32 0))>;
def : Pat<(v4i32 (sext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
(SSHLLv8i16_shift V128:$Rn, (i32 0))>;
def : Pat<(v2i64 (anyext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
(USHLLv4i32_shift V128:$Rn, (i32 0))>;
def : Pat<(v2i64 (zext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
(USHLLv4i32_shift V128:$Rn, (i32 0))>;
def : Pat<(v2i64 (sext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
(SSHLLv4i32_shift V128:$Rn, (i32 0))>;
// Vector shift sxtl aliases
def : InstAlias<"sxtl.8h $dst, $src1",
(SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"sxtl $dst.8h, $src1.8b",
(SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"sxtl.4s $dst, $src1",
(SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"sxtl $dst.4s, $src1.4h",
(SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"sxtl.2d $dst, $src1",
(SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"sxtl $dst.2d, $src1.2s",
(SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
// Vector shift sxtl2 aliases
def : InstAlias<"sxtl2.8h $dst, $src1",
(SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"sxtl2 $dst.8h, $src1.16b",
(SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"sxtl2.4s $dst, $src1",
(SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"sxtl2 $dst.4s, $src1.8h",
(SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"sxtl2.2d $dst, $src1",
(SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"sxtl2 $dst.2d, $src1.4s",
(SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
// Vector shift uxtl aliases
def : InstAlias<"uxtl.8h $dst, $src1",
(USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"uxtl $dst.8h, $src1.8b",
(USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"uxtl.4s $dst, $src1",
(USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"uxtl $dst.4s, $src1.4h",
(USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"uxtl.2d $dst, $src1",
(USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"uxtl $dst.2d, $src1.2s",
(USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
// Vector shift uxtl2 aliases
def : InstAlias<"uxtl2.8h $dst, $src1",
(USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"uxtl2 $dst.8h, $src1.16b",
(USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"uxtl2.4s $dst, $src1",
(USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"uxtl2 $dst.4s, $src1.8h",
(USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"uxtl2.2d $dst, $src1",
(USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"uxtl2 $dst.2d, $src1.4s",
(USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
// If an integer is about to be converted to a floating point value,
// just load it on the floating point unit.
// These patterns are more complex because floating point loads do not
// support sign extension.
// The sign extension has to be explicitly added and is only supported for
// one step: byte-to-half, half-to-word, word-to-doubleword.
// SCVTF GPR -> FPR is 9 cycles.
// SCVTF FPR -> FPR is 4 cyclces.
// (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles.
// Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR
// and still being faster.
// However, this is not good for code size.
// 8-bits -> float. 2 sizes step-up.
def : Pat <(f32 (sint_to_fp (i32 (sextloadi8 ro_indexed8:$addr)))),
(SCVTFv1i32 (f32 (EXTRACT_SUBREG
(SSHLLv4i16_shift
(f64
(EXTRACT_SUBREG
(SSHLLv8i8_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRBro ro_indexed8:$addr),
bsub),
0),
dsub)),
0),
ssub)))>, Requires<[NotForCodeSize]>;
def : Pat <(f32 (sint_to_fp (i32 (sextloadi8 am_indexed8:$addr)))),
(SCVTFv1i32 (f32 (EXTRACT_SUBREG
(SSHLLv4i16_shift
(f64
(EXTRACT_SUBREG
(SSHLLv8i8_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRBui am_indexed8:$addr),
bsub),
0),
dsub)),
0),
ssub)))>, Requires<[NotForCodeSize]>;
def : Pat <(f32 (sint_to_fp (i32 (sextloadi8 am_unscaled8:$addr)))),
(SCVTFv1i32 (f32 (EXTRACT_SUBREG
(SSHLLv4i16_shift
(f64
(EXTRACT_SUBREG
(SSHLLv8i8_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDURBi am_unscaled8:$addr),
bsub),
0),
dsub)),
0),
ssub)))>, Requires<[NotForCodeSize]>;
// 16-bits -> float. 1 size step-up.
def : Pat <(f32 (sint_to_fp (i32 (sextloadi16 ro_indexed16:$addr)))),
(SCVTFv1i32 (f32 (EXTRACT_SUBREG
(SSHLLv4i16_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRHro ro_indexed16:$addr),
hsub),
0),
ssub)))>, Requires<[NotForCodeSize]>;
def : Pat <(f32 (sint_to_fp (i32 (sextloadi16 am_indexed16:$addr)))),
(SCVTFv1i32 (f32 (EXTRACT_SUBREG
(SSHLLv4i16_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRHui am_indexed16:$addr),
hsub),
0),
ssub)))>, Requires<[NotForCodeSize]>;
def : Pat <(f32 (sint_to_fp (i32 (sextloadi16 am_unscaled16:$addr)))),
(SCVTFv1i32 (f32 (EXTRACT_SUBREG
(SSHLLv4i16_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDURHi am_unscaled16:$addr),
hsub),
0),
ssub)))>, Requires<[NotForCodeSize]>;
// 32-bits to 32-bits are handled in target specific dag combine:
// performIntToFpCombine.
// 64-bits integer to 32-bits floating point, not possible with
// SCVTF on floating point registers (both source and destination
// must have the same size).
// Here are the patterns for 8, 16, 32, and 64-bits to double.
// 8-bits -> double. 3 size step-up: give up.
// 16-bits -> double. 2 size step.
def : Pat <(f64 (sint_to_fp (i32 (sextloadi16 ro_indexed16:$addr)))),
(SCVTFv1i64 (f64 (EXTRACT_SUBREG
(SSHLLv2i32_shift
(f64
(EXTRACT_SUBREG
(SSHLLv4i16_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRHro ro_indexed16:$addr),
hsub),
0),
dsub)),
0),
dsub)))>, Requires<[NotForCodeSize]>;
def : Pat <(f64 (sint_to_fp (i32 (sextloadi16 am_indexed16:$addr)))),
(SCVTFv1i64 (f64 (EXTRACT_SUBREG
(SSHLLv2i32_shift
(f64
(EXTRACT_SUBREG
(SSHLLv4i16_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRHui am_indexed16:$addr),
hsub),
0),
dsub)),
0),
dsub)))>, Requires<[NotForCodeSize]>;
def : Pat <(f64 (sint_to_fp (i32 (sextloadi16 am_unscaled16:$addr)))),
(SCVTFv1i64 (f64 (EXTRACT_SUBREG
(SSHLLv2i32_shift
(f64
(EXTRACT_SUBREG
(SSHLLv4i16_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDURHi am_unscaled16:$addr),
hsub),
0),
dsub)),
0),
dsub)))>, Requires<[NotForCodeSize]>;
// 32-bits -> double. 1 size step-up.
def : Pat <(f64 (sint_to_fp (i32 (load ro_indexed32:$addr)))),
(SCVTFv1i64 (f64 (EXTRACT_SUBREG
(SSHLLv2i32_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRSro ro_indexed32:$addr),
ssub),
0),
dsub)))>, Requires<[NotForCodeSize]>;
def : Pat <(f64 (sint_to_fp (i32 (load am_indexed32:$addr)))),
(SCVTFv1i64 (f64 (EXTRACT_SUBREG
(SSHLLv2i32_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRSui am_indexed32:$addr),
ssub),
0),
dsub)))>, Requires<[NotForCodeSize]>;
def : Pat <(f64 (sint_to_fp (i32 (load am_unscaled32:$addr)))),
(SCVTFv1i64 (f64 (EXTRACT_SUBREG
(SSHLLv2i32_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDURSi am_unscaled32:$addr),
ssub),
0),
dsub)))>, Requires<[NotForCodeSize]>;
// 64-bits -> double are handled in target specific dag combine:
// performIntToFpCombine.
//----------------------------------------------------------------------------
// AdvSIMD Load-Store Structure
//----------------------------------------------------------------------------
defm LD1 : SIMDLd1Multiple<"ld1">;
defm LD2 : SIMDLd2Multiple<"ld2">;
defm LD3 : SIMDLd3Multiple<"ld3">;
defm LD4 : SIMDLd4Multiple<"ld4">;
defm ST1 : SIMDSt1Multiple<"st1">;
defm ST2 : SIMDSt2Multiple<"st2">;
defm ST3 : SIMDSt3Multiple<"st3">;
defm ST4 : SIMDSt4Multiple<"st4">;
class Ld1Pat<ValueType ty, Instruction INST>
: Pat<(ty (load am_simdnoindex:$vaddr)), (INST am_simdnoindex:$vaddr)>;
def : Ld1Pat<v16i8, LD1Onev16b>;
def : Ld1Pat<v8i16, LD1Onev8h>;
def : Ld1Pat<v4i32, LD1Onev4s>;
def : Ld1Pat<v2i64, LD1Onev2d>;
def : Ld1Pat<v8i8, LD1Onev8b>;
def : Ld1Pat<v4i16, LD1Onev4h>;
def : Ld1Pat<v2i32, LD1Onev2s>;
def : Ld1Pat<v1i64, LD1Onev1d>;
class St1Pat<ValueType ty, Instruction INST>
: Pat<(store ty:$Vt, am_simdnoindex:$vaddr),
(INST ty:$Vt, am_simdnoindex:$vaddr)>;
def : St1Pat<v16i8, ST1Onev16b>;
def : St1Pat<v8i16, ST1Onev8h>;
def : St1Pat<v4i32, ST1Onev4s>;
def : St1Pat<v2i64, ST1Onev2d>;
def : St1Pat<v8i8, ST1Onev8b>;
def : St1Pat<v4i16, ST1Onev4h>;
def : St1Pat<v2i32, ST1Onev2s>;
def : St1Pat<v1i64, ST1Onev1d>;
//---
// Single-element
//---
defm LD1R : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>;
defm LD2R : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>;
defm LD3R : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>;
defm LD4R : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>;
let mayLoad = 1, neverHasSideEffects = 1 in {
defm LD1 : SIMDLdSingleBTied<0, 0b000, "ld1", VecListOneb, GPR64pi1>;
defm LD1 : SIMDLdSingleHTied<0, 0b010, 0, "ld1", VecListOneh, GPR64pi2>;
defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes, GPR64pi4>;
defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned, GPR64pi8>;
defm LD2 : SIMDLdSingleBTied<1, 0b000, "ld2", VecListTwob, GPR64pi2>;
defm LD2 : SIMDLdSingleHTied<1, 0b010, 0, "ld2", VecListTwoh, GPR64pi4>;
defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos, GPR64pi8>;
defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod, GPR64pi16>;
defm LD3 : SIMDLdSingleBTied<0, 0b001, "ld3", VecListThreeb, GPR64pi3>;
defm LD3 : SIMDLdSingleHTied<0, 0b011, 0, "ld3", VecListThreeh, GPR64pi6>;
defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>;
defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>;
defm LD4 : SIMDLdSingleBTied<1, 0b001, "ld4", VecListFourb, GPR64pi4>;
defm LD4 : SIMDLdSingleHTied<1, 0b011, 0, "ld4", VecListFourh, GPR64pi8>;
defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours, GPR64pi16>;
defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd, GPR64pi32>;
}
def : Pat<(v8i8 (ARM64dup (i32 (extloadi8 am_simdnoindex:$vaddr)))),
(LD1Rv8b am_simdnoindex:$vaddr)>;
def : Pat<(v16i8 (ARM64dup (i32 (extloadi8 am_simdnoindex:$vaddr)))),
(LD1Rv16b am_simdnoindex:$vaddr)>;
def : Pat<(v4i16 (ARM64dup (i32 (extloadi16 am_simdnoindex:$vaddr)))),
(LD1Rv4h am_simdnoindex:$vaddr)>;
def : Pat<(v8i16 (ARM64dup (i32 (extloadi16 am_simdnoindex:$vaddr)))),
(LD1Rv8h am_simdnoindex:$vaddr)>;
def : Pat<(v2i32 (ARM64dup (i32 (load am_simdnoindex:$vaddr)))),
(LD1Rv2s am_simdnoindex:$vaddr)>;
def : Pat<(v4i32 (ARM64dup (i32 (load am_simdnoindex:$vaddr)))),
(LD1Rv4s am_simdnoindex:$vaddr)>;
def : Pat<(v2i64 (ARM64dup (i64 (load am_simdnoindex:$vaddr)))),
(LD1Rv2d am_simdnoindex:$vaddr)>;
def : Pat<(v1i64 (ARM64dup (i64 (load am_simdnoindex:$vaddr)))),
(LD1Rv1d am_simdnoindex:$vaddr)>;
// Grab the floating point version too
def : Pat<(v2f32 (ARM64dup (f32 (load am_simdnoindex:$vaddr)))),
(LD1Rv2s am_simdnoindex:$vaddr)>;
def : Pat<(v4f32 (ARM64dup (f32 (load am_simdnoindex:$vaddr)))),
(LD1Rv4s am_simdnoindex:$vaddr)>;
def : Pat<(v2f64 (ARM64dup (f64 (load am_simdnoindex:$vaddr)))),
(LD1Rv2d am_simdnoindex:$vaddr)>;
def : Pat<(v1f64 (ARM64dup (f64 (load am_simdnoindex:$vaddr)))),
(LD1Rv1d am_simdnoindex:$vaddr)>;
class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction LD1>
: Pat<(vector_insert (VTy VecListOne128:$Rd),
(STy (scalar_load am_simdnoindex:$vaddr)), VecIndex:$idx),
(LD1 VecListOne128:$Rd, VecIndex:$idx, am_simdnoindex:$vaddr)>;
def : Ld1Lane128Pat<extloadi8, VectorIndexB, v16i8, i32, LD1i8>;
def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>;
def : Ld1Lane128Pat<load, VectorIndexS, v4i32, i32, LD1i32>;
def : Ld1Lane128Pat<load, VectorIndexS, v4f32, f32, LD1i32>;
def : Ld1Lane128Pat<load, VectorIndexD, v2i64, i64, LD1i64>;
def : Ld1Lane128Pat<load, VectorIndexD, v2f64, f64, LD1i64>;
class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction LD1>
: Pat<(vector_insert (VTy VecListOne64:$Rd),
(STy (scalar_load am_simdnoindex:$vaddr)), VecIndex:$idx),
(EXTRACT_SUBREG
(LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub),
VecIndex:$idx, am_simdnoindex:$vaddr),
dsub)>;
def : Ld1Lane64Pat<extloadi8, VectorIndexB, v8i8, i32, LD1i8>;
def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>;
def : Ld1Lane64Pat<load, VectorIndexS, v2i32, i32, LD1i32>;
def : Ld1Lane64Pat<load, VectorIndexS, v2f32, f32, LD1i32>;
defm LD1 : SIMDLdSt1SingleAliases<"ld1">;
defm LD2 : SIMDLdSt2SingleAliases<"ld2">;
defm LD3 : SIMDLdSt3SingleAliases<"ld3">;
defm LD4 : SIMDLdSt4SingleAliases<"ld4">;
// Stores
defm ST1 : SIMDStSingleB<0, 0b000, "st1", VecListOneb, GPR64pi1>;
defm ST1 : SIMDStSingleH<0, 0b010, 0, "st1", VecListOneh, GPR64pi2>;
defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>;
defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>;
let AddedComplexity = 8 in
class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction ST1>
: Pat<(scalar_store
(STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
am_simdnoindex:$vaddr),
(ST1 VecListOne128:$Vt, VecIndex:$idx, am_simdnoindex:$vaddr)>;
def : St1Lane128Pat<truncstorei8, VectorIndexB, v16i8, i32, ST1i8>;
def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>;
def : St1Lane128Pat<store, VectorIndexS, v4i32, i32, ST1i32>;
def : St1Lane128Pat<store, VectorIndexS, v4f32, f32, ST1i32>;
def : St1Lane128Pat<store, VectorIndexD, v2i64, i64, ST1i64>;
def : St1Lane128Pat<store, VectorIndexD, v2f64, f64, ST1i64>;
let AddedComplexity = 8 in
class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction ST1>
: Pat<(scalar_store
(STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
am_simdnoindex:$vaddr),
(ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
VecIndex:$idx, am_simdnoindex:$vaddr)>;
def : St1Lane64Pat<truncstorei8, VectorIndexB, v8i8, i32, ST1i8>;
def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>;
def : St1Lane64Pat<store, VectorIndexS, v2i32, i32, ST1i32>;
def : St1Lane64Pat<store, VectorIndexS, v2f32, f32, ST1i32>;
multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction ST1,
int offset> {
def : Pat<(scalar_store
(STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
am_simdnoindex:$vaddr, offset),
(ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
VecIndex:$idx, am_simdnoindex:$vaddr, XZR)>;
def : Pat<(scalar_store
(STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
am_simdnoindex:$vaddr, GPR64:$Rm),
(ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
VecIndex:$idx, am_simdnoindex:$vaddr, $Rm)>;
}
defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>;
defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST,
2>;
defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>;
defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>;
defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>;
defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>;
multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction ST1,
int offset> {
def : Pat<(scalar_store
(STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
am_simdnoindex:$vaddr, offset),
(ST1 VecListOne128:$Vt, VecIndex:$idx, am_simdnoindex:$vaddr, XZR)>;
def : Pat<(scalar_store
(STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
am_simdnoindex:$vaddr, GPR64:$Rm),
(ST1 VecListOne128:$Vt, VecIndex:$idx, am_simdnoindex:$vaddr, $Rm)>;
}
defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST,
1>;
defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST,
2>;
defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>;
defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>;
defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>;
defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>;
let mayStore = 1, neverHasSideEffects = 1 in {
defm ST2 : SIMDStSingleB<1, 0b000, "st2", VecListTwob, GPR64pi2>;
defm ST2 : SIMDStSingleH<1, 0b010, 0, "st2", VecListTwoh, GPR64pi4>;
defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos, GPR64pi8>;
defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod, GPR64pi16>;
defm ST3 : SIMDStSingleB<0, 0b001, "st3", VecListThreeb, GPR64pi3>;
defm ST3 : SIMDStSingleH<0, 0b011, 0, "st3", VecListThreeh, GPR64pi6>;
defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>;
defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>;
defm ST4 : SIMDStSingleB<1, 0b001, "st4", VecListFourb, GPR64pi4>;
defm ST4 : SIMDStSingleH<1, 0b011, 0, "st4", VecListFourh, GPR64pi8>;
defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours, GPR64pi16>;
defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd, GPR64pi32>;
}
defm ST1 : SIMDLdSt1SingleAliases<"st1">;
defm ST2 : SIMDLdSt2SingleAliases<"st2">;
defm ST3 : SIMDLdSt3SingleAliases<"st3">;
defm ST4 : SIMDLdSt4SingleAliases<"st4">;
//----------------------------------------------------------------------------
// Crypto extensions
//----------------------------------------------------------------------------
def AESErr : AESTiedInst<0b0100, "aese", int_arm64_crypto_aese>;
def AESDrr : AESTiedInst<0b0101, "aesd", int_arm64_crypto_aesd>;
def AESMCrr : AESInst< 0b0110, "aesmc", int_arm64_crypto_aesmc>;
def AESIMCrr : AESInst< 0b0111, "aesimc", int_arm64_crypto_aesimc>;
def SHA1Crrr : SHATiedInstQSV<0b000, "sha1c", int_arm64_crypto_sha1c>;
def SHA1Prrr : SHATiedInstQSV<0b001, "sha1p", int_arm64_crypto_sha1p>;
def SHA1Mrrr : SHATiedInstQSV<0b010, "sha1m", int_arm64_crypto_sha1m>;
def SHA1SU0rrr : SHATiedInstVVV<0b011, "sha1su0", int_arm64_crypto_sha1su0>;
def SHA256Hrrr : SHATiedInstQQV<0b100, "sha256h", int_arm64_crypto_sha256h>;
def SHA256H2rrr : SHATiedInstQQV<0b101, "sha256h2",int_arm64_crypto_sha256h2>;
def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_arm64_crypto_sha256su1>;
def SHA1Hrr : SHAInstSS< 0b0000, "sha1h", int_arm64_crypto_sha1h>;
def SHA1SU1rr : SHATiedInstVV<0b0001, "sha1su1", int_arm64_crypto_sha1su1>;
def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_arm64_crypto_sha256su0>;
//----------------------------------------------------------------------------
// Compiler-pseudos
//----------------------------------------------------------------------------
// FIXME: Like for X86, these should go in their own separate .td file.
// Any instruction that defines a 32-bit result leaves the high half of the
// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
// be copying from a truncate. But any other 32-bit operation will zero-extend
// up to 64 bits.
// FIXME: X86 also checks for CMOV here. Do we need something similar?
def def32 : PatLeaf<(i32 GPR32:$src), [{
return N->getOpcode() != ISD::TRUNCATE &&
N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
N->getOpcode() != ISD::CopyFromReg;
}]>;
// In the case of a 32-bit def that is known to implicitly zero-extend,
// we can use a SUBREG_TO_REG.
def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GPR32:$src, sub_32)>;
// For an anyext, we don't care what the high bits are, so we can perform an
// INSERT_SUBREF into an IMPLICIT_DEF.
def : Pat<(i64 (anyext GPR32:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
// When we need to explicitly zero-extend, we use an unsigned bitfield move
// instruction (UBFM) on the enclosing super-reg.
def : Pat<(i64 (zext GPR32:$src)),
(UBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>;
// To sign extend, we use a signed bitfield move instruction (SBFM) on the
// containing super-reg.
def : Pat<(i64 (sext GPR32:$src)),
(SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>;
def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>;
def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>;
def : Pat<(i64 (sext_inreg GPR64:$src, i8)), (SBFMXri GPR64:$src, 0, 7)>;
def : Pat<(i64 (sext_inreg GPR64:$src, i1)), (SBFMXri GPR64:$src, 0, 0)>;
def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>;
def : Pat<(i32 (sext_inreg GPR32:$src, i8)), (SBFMWri GPR32:$src, 0, 7)>;
def : Pat<(i32 (sext_inreg GPR32:$src, i1)), (SBFMWri GPR32:$src, 0, 0)>;
def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)),
(SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
(i64 (i32shift_sext_i8 imm0_31:$imm)))>;
def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)),
(SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
(i64 (i64shift_sext_i8 imm0_63:$imm)))>;
def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)),
(SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
(i64 (i32shift_sext_i16 imm0_31:$imm)))>;
def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)),
(SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
(i64 (i64shift_sext_i16 imm0_63:$imm)))>;
def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)),
(SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
(i64 (i64shift_a imm0_63:$imm)),
(i64 (i64shift_sext_i32 imm0_63:$imm)))>;
// sra patterns have an AddedComplexity of 10, so make sure we have a higher
// AddedComplexity for the following patterns since we want to match sext + sra
// patterns before we attempt to match a single sra node.
let AddedComplexity = 20 in {
// We support all sext + sra combinations which preserve at least one bit of the
// original value which is to be sign extended. E.g. we support shifts up to
// bitwidth-1 bits.
def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)),
(SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>;
def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)),
(SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>;
def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)),
(SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>;
def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)),
(SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>;
def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)),
(SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
(i64 imm0_31:$imm), 31)>;
} // AddedComplexity = 20
// To truncate, we can simply extract from a subregister.
def : Pat<(i32 (trunc GPR64sp:$src)),
(i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>;
// __builtin_trap() uses the BRK instruction on ARM64.
def : Pat<(trap), (BRK 1)>;
// Conversions within AdvSIMD types in the same register size are free.
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
// But because we need a consistent lane ordering, in big endian many
// conversions require one or more REV instructions.
//
// Consider a simple memory load followed by a bitconvert then a store.
// v0 = load v2i32
// v1 = BITCAST v2i32 v0 to v4i16
// store v4i16 v2
//
// In big endian mode every memory access has an implicit byte swap. LDR and
// STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that
// is, they treat the vector as a sequence of elements to be byte-swapped.
// The two pairs of instructions are fundamentally incompatible. We've decided
// to use LD1/ST1 only to simplify compiler implementation.
//
// LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes
// the original code sequence:
// v0 = load v2i32
// v1 = REV v2i32 (implicit)
// v2 = BITCAST v2i32 v1 to v4i16
// v3 = REV v4i16 v2 (implicit)
// store v4i16 v3
//
// But this is now broken - the value stored is different to the value loaded
// due to lane reordering. To fix this, on every BITCAST we must perform two
// other REVs:
// v0 = load v2i32
// v1 = REV v2i32 (implicit)
// v2 = REV v2i32
// v3 = BITCAST v2i32 v2 to v4i16
// v4 = REV v4i16
// v5 = REV v4i16 v4 (implicit)
// store v4i16 v5
//
// This means an extra two instructions, but actually in most cases the two REV
// instructions can be combined into one. For example:
// (REV64_2s (REV64_4h X)) === (REV32_4h X)
//
// There is also no 128-bit REV instruction. This must be synthesized with an
// EXT instruction.
//
// Most bitconverts require some sort of conversion. The only exceptions are:
// a) Identity conversions - vNfX <-> vNiX
// b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX
//
let Predicates = [IsLE] in {
def : Pat<(v8i8 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
}
let Predicates = [IsBE] in {
def : Pat<(v8i8 (bitconvert GPR64:$Xn)),
(REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
def : Pat<(v4i16 (bitconvert GPR64:$Xn)),
(REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
def : Pat<(v2i32 (bitconvert GPR64:$Xn)),
(REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
def : Pat<(v2f32 (bitconvert GPR64:$Xn)),
(REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))),
(REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
(REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
(REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
(REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
}
def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)),
(COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)),
(COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>;
def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))),
(COPY_TO_REGCLASS GPR32:$Xn, FPR32)>;
def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))),
(COPY_TO_REGCLASS FPR32:$Xn, GPR32)>;
def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))),
(COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))),
(COPY_TO_REGCLASS FPR64:$Xn, GPR64)>;
def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
let Predicates = [IsLE] in {
def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
}
let Predicates = [IsBE] in {
def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))),
(v1i64 (REV64v2i32 FPR64:$src))>;
def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))),
(v1i64 (REV64v4i16 FPR64:$src))>;
def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))),
(v1i64 (REV64v8i8 FPR64:$src))>;
def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))),
(v1i64 (REV64v2i32 FPR64:$src))>;
}
def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
def : Pat<(v1i64 (bitconvert (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
let Predicates = [IsLE] in {
def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
}
let Predicates = [IsBE] in {
def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))),
(v2i32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))),
(v2i32 (REV32v4i16 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))),
(v2i32 (REV32v8i8 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))),
(v2i32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))),
(v2i32 (REV64v2i32 FPR64:$src))>;
}
def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
let Predicates = [IsLE] in {
def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
}
let Predicates = [IsBE] in {
def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))),
(v4i16 (REV64v4i16 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))),
(v4i16 (REV32v4i16 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))),
(v4i16 (REV16v8i8 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))),
(v4i16 (REV64v4i16 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))),
(v4i16 (REV32v4i16 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))),
(v4i16 (REV64v4i16 FPR64:$src))>;
}
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
let Predicates = [IsLE] in {
def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))), (v8i8 FPR64:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
}
let Predicates = [IsBE] in {
def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))),
(v8i8 (REV64v8i8 FPR64:$src))>;
def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))),
(v8i8 (REV32v8i8 FPR64:$src))>;
def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))),
(v8i8 (REV16v8i8 FPR64:$src))>;
def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))),
(v8i8 (REV64v8i8 FPR64:$src))>;
def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))),
(v8i8 (REV32v8i8 FPR64:$src))>;
def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))),
(v8i8 (REV64v8i8 FPR64:$src))>;
}
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
let Predicates = [IsLE] in {
def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))), (f64 FPR64:$src)>;
def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))), (f64 FPR64:$src)>;
def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))), (f64 FPR64:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))), (f64 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))),
(f64 (REV64v2i32 FPR64:$src))>;
def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))),
(f64 (REV64v4i16 FPR64:$src))>;
def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))),
(f64 (REV64v2i32 FPR64:$src))>;
def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))),
(f64 (REV64v8i8 FPR64:$src))>;
}
def : Pat<(f64 (bitconvert (v1i64 FPR64:$src))), (f64 FPR64:$src)>;
def : Pat<(f64 (bitconvert (v1f64 FPR64:$src))), (f64 FPR64:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
let Predicates = [IsLE] in {
def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
}
let Predicates = [IsBE] in {
def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))),
(v1f64 (REV64v2i32 FPR64:$src))>;
def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))),
(v1f64 (REV64v4i16 FPR64:$src))>;
def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))),
(v1f64 (REV64v8i8 FPR64:$src))>;
def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))),
(v1f64 (REV64v2i32 FPR64:$src))>;
}
def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
let Predicates = [IsLE] in {
def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))),
(v2f32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))),
(v2f32 (REV32v4i16 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))),
(v2f32 (REV32v8i8 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))),
(v2f32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))),
(v2f32 (REV64v2i32 FPR64:$src))>;
}
def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
let Predicates = [IsLE] in {
def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))),
(f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))),
(f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
(REV64v4i32 FPR128:$src), (i32 8)))>;
def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))),
(f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
(REV64v8i16 FPR128:$src), (i32 8)))>;
def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))),
(f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))),
(f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
(REV64v4i32 FPR128:$src), (i32 8)))>;
def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))),
(f128 (EXTv16i8 (REV64v16i8 FPR128:$src),
(REV64v16i8 FPR128:$src), (i32 8)))>;
}
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
let Predicates = [IsLE] in {
def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
}
let Predicates = [IsBE] in {
def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))),
(v2f64 (EXTv16i8 FPR128:$src,
FPR128:$src, (i32 8)))>;
def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))),
(v2f64 (REV64v4i32 FPR128:$src))>;
def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))),
(v2f64 (REV64v8i16 FPR128:$src))>;
def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))),
(v2f64 (REV64v16i8 FPR128:$src))>;
def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))),
(v2f64 (REV64v4i32 FPR128:$src))>;
}
def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
let Predicates = [IsLE] in {
def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
}
let Predicates = [IsBE] in {
def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))),
(v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src),
(REV64v4i32 FPR128:$src), (i32 8)))>;
def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))),
(v4f32 (REV32v8i16 FPR128:$src))>;
def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))),
(v4f32 (REV32v16i8 FPR128:$src))>;
def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))),
(v4f32 (REV64v4i32 FPR128:$src))>;
def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))),
(v4f32 (REV64v4i32 FPR128:$src))>;
}
def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
let Predicates = [IsLE] in {
def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
}
let Predicates = [IsBE] in {
def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))),
(v2i64 (EXTv16i8 FPR128:$src,
FPR128:$src, (i32 8)))>;
def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))),
(v2i64 (REV64v4i32 FPR128:$src))>;
def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))),
(v2i64 (REV64v8i16 FPR128:$src))>;
def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))),
(v2i64 (REV64v16i8 FPR128:$src))>;
def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))),
(v2i64 (REV64v4i32 FPR128:$src))>;
}
def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
let Predicates = [IsLE] in {
def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
}
let Predicates = [IsBE] in {
def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))),
(v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src),
(REV64v4i32 FPR128:$src),
(i32 8)))>;
def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))),
(v4i32 (REV64v4i32 FPR128:$src))>;
def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))),
(v4i32 (REV32v8i16 FPR128:$src))>;
def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))),
(v4i32 (REV32v16i8 FPR128:$src))>;
def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))),
(v4i32 (REV64v4i32 FPR128:$src))>;
}
def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
let Predicates = [IsLE] in {
def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
}
let Predicates = [IsBE] in {
def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))),
(v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src),
(REV64v8i16 FPR128:$src),
(i32 8)))>;
def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))),
(v8i16 (REV64v8i16 FPR128:$src))>;
def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))),
(v8i16 (REV32v8i16 FPR128:$src))>;
def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))),
(v8i16 (REV16v16i8 FPR128:$src))>;
def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))),
(v8i16 (REV64v8i16 FPR128:$src))>;
def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))),
(v8i16 (REV32v8i16 FPR128:$src))>;
}
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
let Predicates = [IsLE] in {
def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
[ARM64-BE] Implement the crazy bitcast handling for big endian vectors. Because we've canonicalised on using LD1/ST1, every time we do a bitcast between vector types we must do an equivalent lane reversal. Consider a simple memory load followed by a bitconvert then a store. v0 = load v2i32 v1 = BITCAST v2i32 v0 to v4i16 store v4i16 v2 In big endian mode every memory access has an implicit byte swap. LDR and STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that is, they treat the vector as a sequence of elements to be byte-swapped. The two pairs of instructions are fundamentally incompatible. We've decided to use LD1/ST1 only to simplify compiler implementation. LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes the original code sequence: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = BITCAST v2i32 v1 to v4i16 v3 = REV v4i16 v2 (implicit) store v4i16 v3 But this is now broken - the value stored is different to the value loaded due to lane reordering. To fix this, on every BITCAST we must perform two other REVs: v0 = load v2i32 v1 = REV v2i32 (implicit) v2 = REV v2i32 v3 = BITCAST v2i32 v2 to v4i16 v4 = REV v4i16 v5 = REV v4i16 v4 (implicit) store v4i16 v5 This means an extra two instructions, but actually in most cases the two REV instructions can be combined into one. For example: (REV64_2s (REV64_4h X)) === (REV32_4h X) There is also no 128-bit REV instruction. This must be synthesized with an EXT instruction. Most bitconverts require some sort of conversion. The only exceptions are: a) Identity conversions - vNfX <-> vNiX b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX Even though there are hundreds of changed lines, I have a fairly high confidence that they are somewhat correct. The changes to add two REV instructions per bitcast were pretty mechanical, and once I'd done that I threw the resulting .td at a script I wrote which combined the two REVs together (and added an EXT instruction, for f128) based on an instruction description I gave it. This was much less prone to error than doing it all manually, plus my brain would not just have melted but would have vapourised. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 11:28:53 +00:00
}
let Predicates = [IsBE] in {
def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))),
(v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src),
(REV64v16i8 FPR128:$src),
(i32 8)))>;
def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))),
(v16i8 (REV64v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))),
(v16i8 (REV32v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))),
(v16i8 (REV16v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))),
(v16i8 (REV64v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))),
(v16i8 (REV32v16i8 FPR128:$src))>;
}
def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))),
(EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))),
(EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))),
(EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))),
(EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
// A 64-bit subvector insert to the first 128-bit vector position
// is a subregister copy that needs no instruction.
def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (i32 0)),
(INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (i32 0)),
(INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (i32 0)),
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (i32 0)),
(INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (i32 0)),
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (i32 0)),
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
// Use pair-wise add instructions when summing up the lanes for v2f64, v2i64
// or v2f32.
def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)),
(vector_extract (v2i64 FPR128:$Rn), (i64 1)))),
(i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>;
def : Pat<(f64 (fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)),
(vector_extract (v2f64 FPR128:$Rn), (i64 1)))),
(f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>;
// vector_extract on 64-bit vectors gets promoted to a 128 bit vector,
// so we match on v4f32 here, not v2f32. This will also catch adding
// the low two lanes of a true v4f32 vector.
def : Pat<(fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)),
(vector_extract (v4f32 FPR128:$Rn), (i64 1))),
(f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>;
// Scalar 64-bit shifts in FPR64 registers.
def : Pat<(i64 (int_arm64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
(SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(i64 (int_arm64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
(USHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(i64 (int_arm64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
(SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(i64 (int_arm64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
(URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
// Tail call return handling. These are all compiler pseudo-instructions,
// so no encoding information or anything like that.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst), []>;
def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst), []>;
}
def : Pat<(ARM64tcret tcGPR64:$dst), (TCRETURNri tcGPR64:$dst)>;
def : Pat<(ARM64tcret (i64 tglobaladdr:$dst)), (TCRETURNdi texternalsym:$dst)>;
def : Pat<(ARM64tcret (i64 texternalsym:$dst)), (TCRETURNdi texternalsym:$dst)>;
include "ARM64InstrAtomics.td"