llvm/lib/Support/ConstantRange.cpp

1026 lines
31 KiB
C++
Raw Normal View History

//===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value. This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range. To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators. When used with boolean values, the following are important
// ranges (other integral ranges use min/max values for special range values):
//
// [F, F) = {} = Empty set
// [T, F) = {T}
// [F, T) = {F}
// [T, T) = {F, T} = Full set
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
/// Initialize a range to hold the single specified value.
///
ConstantRangeBase::ConstantRangeBase(const APInt & V)
: Lower(V), Upper(V + 1) {}
ConstantRangeBase::ConstantRangeBase(const APInt &L, const APInt &U)
: Lower(L), Upper(U) {
assert(L.getBitWidth() == U.getBitWidth() &&
"ConstantRange with unequal bit widths");
}
/// print - Print out the bounds to a stream...
///
void ConstantRangeBase::print(raw_ostream &OS) const {
OS << "[" << Lower << "," << Upper << ")";
}
/// dump - Allow printing from a debugger easily...
///
void ConstantRangeBase::dump() const {
print(errs());
}
std::ostream &llvm::operator<<(std::ostream &o,
const ConstantRangeBase &CR) {
raw_os_ostream OS(o);
OS << CR;
return o;
}
/// Initialize a full (the default) or empty set for the specified type.
///
ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) :
ConstantRangeBase(APInt(BitWidth, 0), APInt(BitWidth, 0)) {
if (Full)
Lower = Upper = APInt::getMaxValue(BitWidth);
else
Lower = Upper = APInt::getMinValue(BitWidth);
}
/// Initialize a range to hold the single specified value.
///
ConstantRange::ConstantRange(const APInt & V) : ConstantRangeBase(V) {}
ConstantRange::ConstantRange(const APInt &L, const APInt &U)
: ConstantRangeBase(L, U) {
assert((L != U || (L.isMaxValue() || L.isMinValue())) &&
"Lower == Upper, but they aren't min or max value!");
}
/// isFullSet - Return true if this set contains all of the elements possible
/// for this data-type
bool ConstantRange::isFullSet() const {
return Lower == Upper && Lower.isMaxValue();
}
/// isEmptySet - Return true if this set contains no members.
///
bool ConstantRange::isEmptySet() const {
return Lower == Upper && Lower.isMinValue();
}
/// isWrappedSet - Return true if this set wraps around the top of the range,
/// for example: [100, 8)
///
bool ConstantRange::isWrappedSet() const {
return Lower.ugt(Upper);
}
/// getSetSize - Return the number of elements in this set.
///
APInt ConstantRange::getSetSize() const {
if (isEmptySet())
return APInt(getBitWidth(), 0);
if (getBitWidth() == 1) {
if (Lower != Upper) // One of T or F in the set...
return APInt(2, 1);
return APInt(2, 2); // Must be full set...
}
// Simply subtract the bounds...
return Upper - Lower;
}
/// getUnsignedMax - Return the largest unsigned value contained in the
/// ConstantRange.
///
APInt ConstantRange::getUnsignedMax() const {
if (isFullSet() || isWrappedSet())
return APInt::getMaxValue(getBitWidth());
else
return getUpper() - 1;
}
/// getUnsignedMin - Return the smallest unsigned value contained in the
/// ConstantRange.
///
APInt ConstantRange::getUnsignedMin() const {
if (isFullSet() || (isWrappedSet() && getUpper() != 0))
return APInt::getMinValue(getBitWidth());
else
return getLower();
}
/// getSignedMax - Return the largest signed value contained in the
/// ConstantRange.
///
APInt ConstantRange::getSignedMax() const {
APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
if (!isWrappedSet()) {
if (getLower().sle(getUpper() - 1))
return getUpper() - 1;
else
return SignedMax;
} else {
if ((getUpper() - 1).slt(getLower())) {
if (getLower() != SignedMax)
return SignedMax;
else
return getUpper() - 1;
} else {
return getUpper() - 1;
}
}
}
/// getSignedMin - Return the smallest signed value contained in the
/// ConstantRange.
///
APInt ConstantRange::getSignedMin() const {
APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
if (!isWrappedSet()) {
if (getLower().sle(getUpper() - 1))
return getLower();
else
return SignedMin;
} else {
if ((getUpper() - 1).slt(getLower())) {
if (getUpper() != SignedMin)
return SignedMin;
else
return getLower();
} else {
return getLower();
}
}
}
/// contains - Return true if the specified value is in the set.
///
bool ConstantRange::contains(const APInt &V) const {
if (Lower == Upper)
return isFullSet();
if (!isWrappedSet())
return Lower.ule(V) && V.ult(Upper);
else
return Lower.ule(V) || V.ult(Upper);
}
/// subtract - Subtract the specified constant from the endpoints of this
/// constant range.
ConstantRange ConstantRange::subtract(const APInt &Val) const {
assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
// If the set is empty or full, don't modify the endpoints.
if (Lower == Upper)
return *this;
return ConstantRange(Lower - Val, Upper - Val);
}
// intersect1Wrapped - This helper function is used to intersect two ranges when
// it is known that LHS is wrapped and RHS isn't.
//
ConstantRange
ConstantRange::intersect1Wrapped(const ConstantRange &LHS,
const ConstantRange &RHS) {
assert(LHS.isWrappedSet() && !RHS.isWrappedSet());
// Check to see if we overlap on the Left side of RHS...
//
if (RHS.Lower.ult(LHS.Upper)) {
// We do overlap on the left side of RHS, see if we overlap on the right of
// RHS...
if (RHS.Upper.ugt(LHS.Lower)) {
// Ok, the result overlaps on both the left and right sides. See if the
// resultant interval will be smaller if we wrap or not...
//
if (LHS.getSetSize().ult(RHS.getSetSize()))
return LHS;
else
return RHS;
} else {
// No overlap on the right, just on the left.
return ConstantRange(RHS.Lower, LHS.Upper);
}
} else {
// We don't overlap on the left side of RHS, see if we overlap on the right
// of RHS...
if (RHS.Upper.ugt(LHS.Lower)) {
// Simple overlap...
return ConstantRange(LHS.Lower, RHS.Upper);
} else {
// No overlap...
return ConstantRange(LHS.getBitWidth(), false);
}
}
}
/// intersectWith - Return the range that results from the intersection of this
/// range with another range.
///
ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!");
// Handle common special cases
if (isEmptySet() || CR.isFullSet())
return *this;
if (isFullSet() || CR.isEmptySet())
return CR;
if (!isWrappedSet()) {
if (!CR.isWrappedSet()) {
APInt L = APIntOps::umax(Lower, CR.Lower);
APInt U = APIntOps::umin(Upper, CR.Upper);
if (L.ult(U)) // If range isn't empty...
return ConstantRange(L, U);
else
return ConstantRange(getBitWidth(), false);// Otherwise, empty set
} else
return intersect1Wrapped(CR, *this);
} else { // We know "this" is wrapped...
if (!CR.isWrappedSet())
return intersect1Wrapped(*this, CR);
else {
// Both ranges are wrapped...
APInt L = APIntOps::umax(Lower, CR.Lower);
APInt U = APIntOps::umin(Upper, CR.Upper);
return ConstantRange(L, U);
}
}
return *this;
}
/// maximalIntersectWith - Return the range that results from the intersection
/// of this range with another range. The resultant range is guaranteed to
/// include all elements contained in both input ranges, and to have the
/// smallest possible set size that does so. Because there may be two
/// intersections with the same set size, A.maximalIntersectWith(B) might not
/// be equal to B.maximalIntersect(A).
ConstantRange
ConstantRange::maximalIntersectWith(const ConstantRange &CR) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!");
// Handle common cases.
if ( isEmptySet() || CR.isFullSet()) return *this;
if (CR.isEmptySet() || isFullSet()) return CR;
if (!isWrappedSet() && CR.isWrappedSet())
return CR.maximalIntersectWith(*this);
if (!isWrappedSet() && !CR.isWrappedSet()) {
if (Lower.ult(CR.Lower)) {
if (Upper.ule(CR.Lower))
return ConstantRange(getBitWidth(), false);
if (Upper.ult(CR.Upper))
return ConstantRange(CR.Lower, Upper);
return CR;
} else {
if (Upper.ult(CR.Upper))
return *this;
if (Lower.ult(CR.Upper))
return ConstantRange(Lower, CR.Upper);
return ConstantRange(getBitWidth(), false);
}
}
if (isWrappedSet() && !CR.isWrappedSet()) {
if (CR.Lower.ult(Upper)) {
if (CR.Upper.ult(Upper))
return CR;
if (CR.Upper.ult(Lower))
return ConstantRange(CR.Lower, Upper);
if (getSetSize().ult(CR.getSetSize()))
return *this;
else
return CR;
} else if (CR.Lower.ult(Lower)) {
if (CR.Upper.ule(Lower))
return ConstantRange(getBitWidth(), false);
return ConstantRange(Lower, CR.Upper);
}
return CR;
}
if (CR.Upper.ult(Upper)) {
if (CR.Lower.ult(Upper)) {
if (getSetSize().ult(CR.getSetSize()))
return *this;
else
return CR;
}
if (CR.Lower.ult(Lower))
return ConstantRange(Lower, CR.Upper);
return CR;
} else if (CR.Upper.ult(Lower)) {
if (CR.Lower.ult(Lower))
return *this;
return ConstantRange(CR.Lower, Upper);
}
if (getSetSize().ult(CR.getSetSize()))
return *this;
else
return CR;
}
/// unionWith - Return the range that results from the union of this range with
/// another range. The resultant range is guaranteed to include the elements of
/// both sets, but may contain more. For example, [3, 9) union [12,15) is
/// [3, 15), which includes 9, 10, and 11, which were not included in either
/// set before.
///
ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!");
if ( isFullSet() || CR.isEmptySet()) return *this;
if (CR.isFullSet() || isEmptySet()) return CR;
if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
APInt L = Lower, U = Upper;
if (!isWrappedSet() && !CR.isWrappedSet()) {
if (CR.Lower.ult(L))
L = CR.Lower;
if (CR.Upper.ugt(U))
U = CR.Upper;
}
if (isWrappedSet() && !CR.isWrappedSet()) {
if ((CR.Lower.ult(Upper) && CR.Upper.ult(Upper)) ||
(CR.Lower.ugt(Lower) && CR.Upper.ugt(Lower))) {
return *this;
}
if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) {
return ConstantRange(getBitWidth());
}
if (CR.Lower.ule(Upper) && CR.Upper.ule(Lower)) {
APInt d1 = CR.Upper - Upper, d2 = Lower - CR.Upper;
if (d1.ult(d2)) {
U = CR.Upper;
} else {
L = CR.Upper;
}
}
if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower)) {
APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
if (d1.ult(d2)) {
U = CR.Lower + 1;
} else {
L = CR.Upper - 1;
}
}
if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper)) {
APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Lower;
if (d1.ult(d2)) {
U = CR.Lower + 1;
} else {
L = CR.Lower;
}
}
}
if (isWrappedSet() && CR.isWrappedSet()) {
if (Lower.ult(CR.Upper) || CR.Lower.ult(Upper))
return ConstantRange(getBitWidth());
if (CR.Upper.ugt(U)) {
U = CR.Upper;
}
if (CR.Lower.ult(L)) {
L = CR.Lower;
}
if (L == U) return ConstantRange(getBitWidth());
}
return ConstantRange(L, U);
}
/// zeroExtend - Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values as if the source range had been
/// zero extended.
ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
unsigned SrcTySize = getBitWidth();
assert(SrcTySize < DstTySize && "Not a value extension");
if (isFullSet())
// Change a source full set into [0, 1 << 8*numbytes)
return ConstantRange(APInt(DstTySize,0), APInt(DstTySize,1).shl(SrcTySize));
APInt L = Lower; L.zext(DstTySize);
APInt U = Upper; U.zext(DstTySize);
return ConstantRange(L, U);
}
/// signExtend - Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values as if the source range had been
/// sign extended.
ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
unsigned SrcTySize = getBitWidth();
assert(SrcTySize < DstTySize && "Not a value extension");
if (isFullSet()) {
return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
APInt::getLowBitsSet(DstTySize, SrcTySize-1));
}
APInt L = Lower; L.sext(DstTySize);
APInt U = Upper; U.sext(DstTySize);
return ConstantRange(L, U);
}
/// truncate - Return a new range in the specified integer type, which must be
/// strictly smaller than the current type. The returned range will
/// correspond to the possible range of values as if the source range had been
/// truncated to the specified type.
ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
unsigned SrcTySize = getBitWidth();
assert(SrcTySize > DstTySize && "Not a value truncation");
APInt Size(APInt::getLowBitsSet(SrcTySize, DstTySize));
if (isFullSet() || getSetSize().ugt(Size))
return ConstantRange(DstTySize);
APInt L = Lower; L.trunc(DstTySize);
APInt U = Upper; U.trunc(DstTySize);
return ConstantRange(L, U);
}
ConstantRange
ConstantRange::add(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
APInt NewLower = getLower() + Other.getLower();
APInt NewUpper = getUpper() + Other.getUpper() - 1;
if (NewLower == NewUpper)
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
ConstantRange X = ConstantRange(NewLower, NewUpper);
if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
// We've wrapped, therefore, full set.
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return X;
}
ConstantRange
ConstantRange::multiply(const ConstantRange &Other) const {
// TODO: Implement multiply.
return ConstantRange(getBitWidth(),
!(isEmptySet() || Other.isEmptySet()));
}
ConstantRange
ConstantRange::smax(const ConstantRange &Other) const {
// TODO: Implement smax.
return ConstantRange(getBitWidth(),
!(isEmptySet() || Other.isEmptySet()));
}
ConstantRange
ConstantRange::umax(const ConstantRange &Other) const {
// X umax Y is: range(umax(X_umin, Y_umin),
// umax(X_umax, Y_umax))
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
if (isFullSet() || Other.isFullSet())
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
if (NewU == NewL)
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return ConstantRange(NewL, NewU);
}
ConstantRange
ConstantRange::udiv(const ConstantRange &Other) const {
// TODO: Implement udiv.
return ConstantRange(getBitWidth(),
!(isEmptySet() || Other.isEmptySet()));
}
/// Initialize a full (the default) or empty set for the specified type.
///
ConstantSignedRange::ConstantSignedRange(uint32_t BitWidth, bool Full) :
ConstantRangeBase(APInt(BitWidth, 0), APInt(BitWidth, 0)) {
if (Full)
Lower = Upper = APInt::getSignedMaxValue(BitWidth);
else
Lower = Upper = APInt::getSignedMinValue(BitWidth);
}
/// Initialize a range to hold the single specified value.
///
ConstantSignedRange::ConstantSignedRange(const APInt & V)
: ConstantRangeBase(V) {}
ConstantSignedRange::ConstantSignedRange(const APInt &L, const APInt &U)
: ConstantRangeBase(L, U) {
assert((L != U || (L.isMaxSignedValue() || L.isMinSignedValue())) &&
"Lower == Upper, but they aren't min or max value!");
}
/// isFullSet - Return true if this set contains all of the elements possible
/// for this data-type
bool ConstantSignedRange::isFullSet() const {
return Lower == Upper && Lower.isMaxSignedValue();
}
/// isEmptySet - Return true if this set contains no members.
///
bool ConstantSignedRange::isEmptySet() const {
return Lower == Upper && Lower.isMinSignedValue();
}
/// isWrappedSet - Return true if this set wraps around the top of the range,
/// for example: [100, 8)
///
bool ConstantSignedRange::isWrappedSet() const {
return Lower.sgt(Upper);
}
/// getSetSize - Return the number of elements in this set.
///
APInt ConstantSignedRange::getSetSize() const {
if (isEmptySet())
return APInt(getBitWidth(), 0);
if (getBitWidth() == 1) {
if (Lower != Upper) // One of T or F in the set...
return APInt(2, 1);
return APInt(2, 2); // Must be full set...
}
// Simply subtract the bounds...
return Upper - Lower;
}
/// getSignedMax - Return the largest signed value contained in the
/// ConstantSignedRange.
///
APInt ConstantSignedRange::getSignedMax() const {
if (isFullSet() || isWrappedSet())
return APInt::getSignedMaxValue(getBitWidth());
else
return getUpper() - 1;
}
/// getSignedMin - Return the smallest signed value contained in the
/// ConstantSignedRange.
///
APInt ConstantSignedRange::getSignedMin() const {
if (isFullSet() || (isWrappedSet() &&
getUpper() != APInt::getSignedMinValue(getBitWidth())))
return APInt::getSignedMinValue(getBitWidth());
else
return getLower();
}
/// getUnsignedMax - Return the largest unsigned value contained in the
/// ConstantSignedRange.
///
APInt ConstantSignedRange::getUnsignedMax() const {
APInt UnsignedMax(APInt::getMaxValue(getBitWidth()));
if (!isWrappedSet()) {
if (getLower().ule(getUpper() - 1))
return getUpper() - 1;
else
return UnsignedMax;
} else {
if ((getUpper() - 1).ult(getLower())) {
if (getLower() != UnsignedMax)
return UnsignedMax;
else
return getUpper() - 1;
} else {
return getUpper() - 1;
}
}
}
/// getUnsignedMin - Return the smallest unsigned value contained in the
/// ConstantSignedRange.
///
APInt ConstantSignedRange::getUnsignedMin() const {
APInt UnsignedMin(APInt::getMinValue(getBitWidth()));
if (!isWrappedSet()) {
if (getLower().ule(getUpper() - 1))
return getLower();
else
return UnsignedMin;
} else {
if ((getUpper() - 1).ult(getLower())) {
if (getUpper() != UnsignedMin)
return UnsignedMin;
else
return getLower();
} else {
return getLower();
}
}
}
/// contains - Return true if the specified value is in the set.
///
bool ConstantSignedRange::contains(const APInt &V) const {
if (Lower == Upper)
return isFullSet();
if (!isWrappedSet())
return Lower.sle(V) && V.slt(Upper);
else
return Lower.sle(V) || V.slt(Upper);
}
/// subtract - Subtract the specified constant from the endpoints of this
/// constant range.
ConstantSignedRange ConstantSignedRange::subtract(const APInt &Val) const {
assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
// If the set is empty or full, don't modify the endpoints.
if (Lower == Upper)
return *this;
return ConstantSignedRange(Lower - Val, Upper - Val);
}
// intersect1Wrapped - This helper function is used to intersect two ranges when
// it is known that LHS is wrapped and RHS isn't.
//
ConstantSignedRange
ConstantSignedRange::intersect1Wrapped(const ConstantSignedRange &LHS,
const ConstantSignedRange &RHS) {
assert(LHS.isWrappedSet() && !RHS.isWrappedSet());
// Check to see if we overlap on the Left side of RHS...
//
if (RHS.Lower.slt(LHS.Upper)) {
// We do overlap on the left side of RHS, see if we overlap on the right of
// RHS...
if (RHS.Upper.sgt(LHS.Lower)) {
// Ok, the result overlaps on both the left and right sides. See if the
// resultant interval will be smaller if we wrap or not...
//
if (LHS.getSetSize().ult(RHS.getSetSize()))
return LHS;
else
return RHS;
} else {
// No overlap on the right, just on the left.
return ConstantSignedRange(RHS.Lower, LHS.Upper);
}
} else {
// We don't overlap on the left side of RHS, see if we overlap on the right
// of RHS...
if (RHS.Upper.sgt(LHS.Lower)) {
// Simple overlap...
return ConstantSignedRange(LHS.Lower, RHS.Upper);
} else {
// No overlap...
return ConstantSignedRange(LHS.getBitWidth(), false);
}
}
}
/// intersectWith - Return the range that results from the intersection of this
/// range with another range.
///
ConstantSignedRange
ConstantSignedRange::intersectWith(const ConstantSignedRange &CR) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantSignedRange types don't agree!");
// Handle common special cases
if (isEmptySet() || CR.isFullSet())
return *this;
if (isFullSet() || CR.isEmptySet())
return CR;
if (!isWrappedSet()) {
if (!CR.isWrappedSet()) {
APInt L = APIntOps::smax(Lower, CR.Lower);
APInt U = APIntOps::smin(Upper, CR.Upper);
if (L.slt(U)) // If range isn't empty...
return ConstantSignedRange(L, U);
else
return ConstantSignedRange(getBitWidth(), false);// Otherwise, empty set
} else
return intersect1Wrapped(CR, *this);
} else { // We know "this" is wrapped...
if (!CR.isWrappedSet())
return intersect1Wrapped(*this, CR);
else {
// Both ranges are wrapped...
APInt L = APIntOps::smax(Lower, CR.Lower);
APInt U = APIntOps::smin(Upper, CR.Upper);
return ConstantSignedRange(L, U);
}
}
return *this;
}
/// maximalIntersectWith - Return the range that results from the intersection
/// of this range with another range. The resultant range is guaranteed to
/// include all elements contained in both input ranges, and to have the
/// smallest possible set size that does so. Because there may be two
/// intersections with the same set size, A.maximalIntersectWith(B) might not
/// be equal to B.maximalIntersect(A).
ConstantSignedRange
ConstantSignedRange::maximalIntersectWith(const ConstantSignedRange &CR) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantSignedRange types don't agree!");
// Handle common cases.
if ( isEmptySet() || CR.isFullSet()) return *this;
if (CR.isEmptySet() || isFullSet()) return CR;
if (!isWrappedSet() && CR.isWrappedSet())
return CR.maximalIntersectWith(*this);
if (!isWrappedSet() && !CR.isWrappedSet()) {
if (Lower.slt(CR.Lower)) {
if (Upper.sle(CR.Lower))
return ConstantSignedRange(getBitWidth(), false);
if (Upper.slt(CR.Upper))
return ConstantSignedRange(CR.Lower, Upper);
return CR;
} else {
if (Upper.slt(CR.Upper))
return *this;
if (Lower.slt(CR.Upper))
return ConstantSignedRange(Lower, CR.Upper);
return ConstantSignedRange(getBitWidth(), false);
}
}
if (isWrappedSet() && !CR.isWrappedSet()) {
if (CR.Lower.slt(Upper)) {
if (CR.Upper.slt(Upper))
return CR;
if (CR.Upper.slt(Lower))
return ConstantSignedRange(CR.Lower, Upper);
if (getSetSize().ult(CR.getSetSize()))
return *this;
else
return CR;
} else if (CR.Lower.slt(Lower)) {
if (CR.Upper.sle(Lower))
return ConstantSignedRange(getBitWidth(), false);
return ConstantSignedRange(Lower, CR.Upper);
}
return CR;
}
if (CR.Upper.slt(Upper)) {
if (CR.Lower.slt(Upper)) {
if (getSetSize().ult(CR.getSetSize()))
return *this;
else
return CR;
}
if (CR.Lower.slt(Lower))
return ConstantSignedRange(Lower, CR.Upper);
return CR;
} else if (CR.Upper.slt(Lower)) {
if (CR.Lower.slt(Lower))
return *this;
return ConstantSignedRange(CR.Lower, Upper);
}
if (getSetSize().ult(CR.getSetSize()))
return *this;
else
return CR;
}
/// unionWith - Return the range that results from the union of this range with
/// another range. The resultant range is guaranteed to include the elements of
/// both sets, but may contain more. For example, [3, 9) union [12,15) is
/// [3, 15), which includes 9, 10, and 11, which were not included in either
/// set before.
///
ConstantSignedRange
ConstantSignedRange::unionWith(const ConstantSignedRange &CR) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantSignedRange types don't agree!");
if ( isFullSet() || CR.isEmptySet()) return *this;
if (CR.isFullSet() || isEmptySet()) return CR;
if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
APInt L = Lower, U = Upper;
if (!isWrappedSet() && !CR.isWrappedSet()) {
if (CR.Lower.slt(L))
L = CR.Lower;
if (CR.Upper.sgt(U))
U = CR.Upper;
}
if (isWrappedSet() && !CR.isWrappedSet()) {
if ((CR.Lower.slt(Upper) && CR.Upper.slt(Upper)) ||
(CR.Lower.sgt(Lower) && CR.Upper.sgt(Lower))) {
return *this;
}
if (CR.Lower.sle(Upper) && Lower.sle(CR.Upper)) {
return ConstantSignedRange(getBitWidth());
}
if (CR.Lower.sle(Upper) && CR.Upper.sle(Lower)) {
APInt d1 = CR.Upper - Upper, d2 = Lower - CR.Upper;
if (d1.slt(d2)) {
U = CR.Upper;
} else {
L = CR.Upper;
}
}
if (Upper.slt(CR.Lower) && CR.Upper.slt(Lower)) {
APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
if (d1.slt(d2)) {
U = CR.Lower + 1;
} else {
L = CR.Upper - 1;
}
}
if (Upper.slt(CR.Lower) && Lower.slt(CR.Upper)) {
APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Lower;
if (d1.slt(d2)) {
U = CR.Lower + 1;
} else {
L = CR.Lower;
}
}
}
if (isWrappedSet() && CR.isWrappedSet()) {
if (Lower.slt(CR.Upper) || CR.Lower.slt(Upper))
return ConstantSignedRange(getBitWidth());
if (CR.Upper.sgt(U)) {
U = CR.Upper;
}
if (CR.Lower.slt(L)) {
L = CR.Lower;
}
if (L == U) return ConstantSignedRange(getBitWidth());
}
return ConstantSignedRange(L, U);
}
/// zeroExtend - Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values as if the source range had been
/// zero extended.
ConstantSignedRange ConstantSignedRange::zeroExtend(uint32_t DstTySize) const {
unsigned SrcTySize = getBitWidth();
assert(SrcTySize < DstTySize && "Not a value extension");
if (isEmptySet())
return ConstantSignedRange(SrcTySize, /*isFullSet=*/false);
if (isFullSet())
// Change a source full set into [0, 1 << 8*numbytes)
return ConstantSignedRange(APInt(DstTySize,0),
APInt(DstTySize,1).shl(SrcTySize));
APInt L, U;
if (Lower.isNegative() && !Upper.isNegative()) {
L = APInt(SrcTySize, 0);
U = APInt::getSignedMinValue(SrcTySize);
} else {
L = Lower;
U = Upper;
}
L.zext(DstTySize);
U.zext(DstTySize);
return ConstantSignedRange(L, U);
}
/// signExtend - Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values as if the source range had been
/// sign extended.
ConstantSignedRange ConstantSignedRange::signExtend(uint32_t DstTySize) const {
unsigned SrcTySize = getBitWidth();
assert(SrcTySize < DstTySize && "Not a value extension");
if (isEmptySet())
return ConstantSignedRange(SrcTySize, /*isFullSet=*/false);
if (isFullSet())
return ConstantSignedRange(APInt(getSignedMin()).sext(DstTySize),
APInt(getSignedMax()).sext(DstTySize)+1);
APInt L = Lower; L.sext(DstTySize);
APInt U = Upper; U.sext(DstTySize);
return ConstantSignedRange(L, U);
}
/// truncate - Return a new range in the specified integer type, which must be
/// strictly smaller than the current type. The returned range will
/// correspond to the possible range of values as if the source range had been
/// truncated to the specified type.
ConstantSignedRange ConstantSignedRange::truncate(uint32_t DstTySize) const {
// TODO: Implement truncate.
return ConstantSignedRange(DstTySize, !isEmptySet());
}
ConstantSignedRange
ConstantSignedRange::add(const ConstantSignedRange &Other) const {
// TODO: Implement add.
return ConstantSignedRange(getBitWidth(),
!(isEmptySet() || Other.isEmptySet()));
}
ConstantSignedRange
ConstantSignedRange::multiply(const ConstantSignedRange &Other) const {
// TODO: Implement multiply.
return ConstantSignedRange(getBitWidth(),
!(isEmptySet() || Other.isEmptySet()));
}
ConstantSignedRange
ConstantSignedRange::smax(const ConstantSignedRange &Other) const {
// X smax Y is: range(smax(X_smin, Y_smin),
// smax(X_smax, Y_smax))
if (isEmptySet() || Other.isEmptySet())
return ConstantSignedRange(getBitWidth(), /*isFullSet=*/false);
if (isFullSet() || Other.isFullSet())
return ConstantSignedRange(getBitWidth(), /*isFullSet=*/true);
APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
if (NewU == NewL)
return ConstantSignedRange(getBitWidth(), /*isFullSet=*/true);
return ConstantSignedRange(NewL, NewU);
}
ConstantSignedRange
ConstantSignedRange::umax(const ConstantSignedRange &Other) const {
// TODO: Implement umax.
return ConstantSignedRange(getBitWidth(),
!(isEmptySet() || Other.isEmptySet()));
}
ConstantSignedRange
ConstantSignedRange::udiv(const ConstantSignedRange &Other) const {
// TODO: Implement udiv.
return ConstantSignedRange(getBitWidth(),
!(isEmptySet() || Other.isEmptySet()));
}