llvm/lib/Transforms/Utils/AddrModeMatcher.cpp

576 lines
22 KiB
C++
Raw Normal View History

//===- AddrModeMatcher.cpp - Addressing mode matching facility --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements target addressing mode matcher class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/AddrModeMatcher.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalValue.h"
#include "llvm/Instruction.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/CallSite.h"
using namespace llvm;
using namespace llvm::PatternMatch;
void ExtAddrMode::print(raw_ostream &OS) const {
bool NeedPlus = false;
OS << "[";
if (BaseGV) {
OS << (NeedPlus ? " + " : "")
<< "GV:";
WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
NeedPlus = true;
}
if (BaseOffs)
OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
if (BaseReg) {
OS << (NeedPlus ? " + " : "")
<< "Base:";
WriteAsOperand(OS, BaseReg, /*PrintType=*/false);
NeedPlus = true;
}
if (Scale) {
OS << (NeedPlus ? " + " : "")
<< Scale << "*";
WriteAsOperand(OS, ScaledReg, /*PrintType=*/false);
NeedPlus = true;
}
OS << ']';
}
void ExtAddrMode::dump() const {
print(dbgs());
dbgs() << '\n';
}
/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
/// Return true and update AddrMode if this addr mode is legal for the target,
/// false if not.
bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
unsigned Depth) {
// If Scale is 1, then this is the same as adding ScaleReg to the addressing
// mode. Just process that directly.
if (Scale == 1)
return MatchAddr(ScaleReg, Depth);
// If the scale is 0, it takes nothing to add this.
if (Scale == 0)
return true;
// If we already have a scale of this value, we can add to it, otherwise, we
// need an available scale field.
if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
return false;
ExtAddrMode TestAddrMode = AddrMode;
// Add scale to turn X*4+X*3 -> X*7. This could also do things like
// [A+B + A*7] -> [B+A*8].
TestAddrMode.Scale += Scale;
TestAddrMode.ScaledReg = ScaleReg;
// If the new address isn't legal, bail out.
if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
return false;
// It was legal, so commit it.
AddrMode = TestAddrMode;
// Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
// to see if ScaleReg is actually X+C. If so, we can turn this into adding
// X*Scale + C*Scale to addr mode.
ConstantInt *CI = 0; Value *AddLHS = 0;
if (isa<Instruction>(ScaleReg) && // not a constant expr.
match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
TestAddrMode.ScaledReg = AddLHS;
TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
// If this addressing mode is legal, commit it and remember that we folded
// this instruction.
if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
AddrMode = TestAddrMode;
return true;
}
}
// Otherwise, not (x+c)*scale, just return what we have.
return true;
}
/// MightBeFoldableInst - This is a little filter, which returns true if an
/// addressing computation involving I might be folded into a load/store
/// accessing it. This doesn't need to be perfect, but needs to accept at least
/// the set of instructions that MatchOperationAddr can.
static bool MightBeFoldableInst(Instruction *I) {
switch (I->getOpcode()) {
case Instruction::BitCast:
// Don't touch identity bitcasts.
if (I->getType() == I->getOperand(0)->getType())
return false;
return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
case Instruction::PtrToInt:
// PtrToInt is always a noop, as we know that the int type is pointer sized.
return true;
case Instruction::IntToPtr:
// We know the input is intptr_t, so this is foldable.
return true;
case Instruction::Add:
return true;
case Instruction::Mul:
case Instruction::Shl:
// Can only handle X*C and X << C.
return isa<ConstantInt>(I->getOperand(1));
case Instruction::GetElementPtr:
return true;
default:
return false;
}
}
/// MatchOperationAddr - Given an instruction or constant expr, see if we can
/// fold the operation into the addressing mode. If so, update the addressing
/// mode and return true, otherwise return false without modifying AddrMode.
bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
unsigned Depth) {
// Avoid exponential behavior on extremely deep expression trees.
if (Depth >= 5) return false;
switch (Opcode) {
case Instruction::PtrToInt:
// PtrToInt is always a noop, as we know that the int type is pointer sized.
return MatchAddr(AddrInst->getOperand(0), Depth);
case Instruction::IntToPtr:
// This inttoptr is a no-op if the integer type is pointer sized.
if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
TLI.getPointerTy())
return MatchAddr(AddrInst->getOperand(0), Depth);
return false;
case Instruction::BitCast:
// BitCast is always a noop, and we can handle it as long as it is
// int->int or pointer->pointer (we don't want int<->fp or something).
if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
// Don't touch identity bitcasts. These were probably put here by LSR,
// and we don't want to mess around with them. Assume it knows what it
// is doing.
AddrInst->getOperand(0)->getType() != AddrInst->getType())
return MatchAddr(AddrInst->getOperand(0), Depth);
return false;
case Instruction::Add: {
// Check to see if we can merge in the RHS then the LHS. If so, we win.
ExtAddrMode BackupAddrMode = AddrMode;
unsigned OldSize = AddrModeInsts.size();
if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
MatchAddr(AddrInst->getOperand(0), Depth+1))
return true;
// Restore the old addr mode info.
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
// Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
MatchAddr(AddrInst->getOperand(1), Depth+1))
return true;
// Otherwise we definitely can't merge the ADD in.
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
break;
}
//case Instruction::Or:
// TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
//break;
case Instruction::Mul:
case Instruction::Shl: {
// Can only handle X*C and X << C.
ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
if (!RHS) return false;
int64_t Scale = RHS->getSExtValue();
if (Opcode == Instruction::Shl)
Scale = 1LL << Scale;
return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
}
case Instruction::GetElementPtr: {
// Scan the GEP. We check it if it contains constant offsets and at most
// one variable offset.
int VariableOperand = -1;
unsigned VariableScale = 0;
int64_t ConstantOffset = 0;
const TargetData *TD = TLI.getTargetData();
gep_type_iterator GTI = gep_type_begin(AddrInst);
for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
const StructLayout *SL = TD->getStructLayout(STy);
unsigned Idx =
cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
ConstantOffset += SL->getElementOffset(Idx);
} else {
uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
ConstantOffset += CI->getSExtValue()*TypeSize;
} else if (TypeSize) { // Scales of zero don't do anything.
// We only allow one variable index at the moment.
if (VariableOperand != -1)
return false;
// Remember the variable index.
VariableOperand = i;
VariableScale = TypeSize;
}
}
}
// A common case is for the GEP to only do a constant offset. In this case,
// just add it to the disp field and check validity.
if (VariableOperand == -1) {
AddrMode.BaseOffs += ConstantOffset;
if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
// Check to see if we can fold the base pointer in too.
if (MatchAddr(AddrInst->getOperand(0), Depth+1))
return true;
}
AddrMode.BaseOffs -= ConstantOffset;
return false;
}
// Save the valid addressing mode in case we can't match.
ExtAddrMode BackupAddrMode = AddrMode;
unsigned OldSize = AddrModeInsts.size();
// See if the scale and offset amount is valid for this target.
AddrMode.BaseOffs += ConstantOffset;
// Match the base operand of the GEP.
if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
// If it couldn't be matched, just stuff the value in a register.
if (AddrMode.HasBaseReg) {
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
return false;
}
AddrMode.HasBaseReg = true;
AddrMode.BaseReg = AddrInst->getOperand(0);
}
// Match the remaining variable portion of the GEP.
if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
Depth)) {
// If it couldn't be matched, try stuffing the base into a register
// instead of matching it, and retrying the match of the scale.
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
if (AddrMode.HasBaseReg)
return false;
AddrMode.HasBaseReg = true;
AddrMode.BaseReg = AddrInst->getOperand(0);
AddrMode.BaseOffs += ConstantOffset;
if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
VariableScale, Depth)) {
// If even that didn't work, bail.
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
return false;
}
}
return true;
}
}
return false;
}
/// MatchAddr - If we can, try to add the value of 'Addr' into the current
/// addressing mode. If Addr can't be added to AddrMode this returns false and
/// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
/// or intptr_t for the target.
///
bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
// Fold in immediates if legal for the target.
AddrMode.BaseOffs += CI->getSExtValue();
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
return true;
AddrMode.BaseOffs -= CI->getSExtValue();
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
// If this is a global variable, try to fold it into the addressing mode.
if (AddrMode.BaseGV == 0) {
AddrMode.BaseGV = GV;
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
return true;
AddrMode.BaseGV = 0;
}
} else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
ExtAddrMode BackupAddrMode = AddrMode;
unsigned OldSize = AddrModeInsts.size();
// Check to see if it is possible to fold this operation.
if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
// Okay, it's possible to fold this. Check to see if it is actually
// *profitable* to do so. We use a simple cost model to avoid increasing
// register pressure too much.
if (I->hasOneUse() ||
IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
AddrModeInsts.push_back(I);
return true;
}
// It isn't profitable to do this, roll back.
//cerr << "NOT FOLDING: " << *I;
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
}
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
return true;
} else if (isa<ConstantPointerNull>(Addr)) {
// Null pointer gets folded without affecting the addressing mode.
return true;
}
// Worse case, the target should support [reg] addressing modes. :)
if (!AddrMode.HasBaseReg) {
AddrMode.HasBaseReg = true;
AddrMode.BaseReg = Addr;
// Still check for legality in case the target supports [imm] but not [i+r].
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
return true;
AddrMode.HasBaseReg = false;
AddrMode.BaseReg = 0;
}
// If the base register is already taken, see if we can do [r+r].
if (AddrMode.Scale == 0) {
AddrMode.Scale = 1;
AddrMode.ScaledReg = Addr;
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
return true;
AddrMode.Scale = 0;
AddrMode.ScaledReg = 0;
}
// Couldn't match.
return false;
}
/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
/// inline asm call are due to memory operands. If so, return true, otherwise
/// return false.
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
const TargetLowering &TLI) {
TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
// Compute the constraint code and ConstraintType to use.
TLI.ComputeConstraintToUse(OpInfo, SDValue());
// If this asm operand is our Value*, and if it isn't an indirect memory
// operand, we can't fold it!
if (OpInfo.CallOperandVal == OpVal &&
(OpInfo.ConstraintType != TargetLowering::C_Memory ||
!OpInfo.isIndirect))
return false;
}
return true;
}
/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
/// memory use. If we find an obviously non-foldable instruction, return true.
/// Add the ultimately found memory instructions to MemoryUses.
static bool FindAllMemoryUses(Instruction *I,
SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
SmallPtrSet<Instruction*, 16> &ConsideredInsts,
const TargetLowering &TLI) {
// If we already considered this instruction, we're done.
if (!ConsideredInsts.insert(I))
return false;
// If this is an obviously unfoldable instruction, bail out.
if (!MightBeFoldableInst(I))
return true;
// Loop over all the uses, recursively processing them.
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI) {
User *U = *UI;
if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
continue;
}
if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
unsigned opNo = UI.getOperandNo();
if (opNo == 0) return true; // Storing addr, not into addr.
MemoryUses.push_back(std::make_pair(SI, opNo));
continue;
}
if (CallInst *CI = dyn_cast<CallInst>(U)) {
InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
if (!IA) return true;
// If this is a memory operand, we're cool, otherwise bail out.
if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
return true;
continue;
}
if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts,
TLI))
return true;
}
return false;
}
/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
/// the use site that we're folding it into. If so, there is no cost to
/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
/// that we know are live at the instruction already.
bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
Value *KnownLive2) {
// If Val is either of the known-live values, we know it is live!
if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
return true;
// All values other than instructions and arguments (e.g. constants) are live.
if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
// If Val is a constant sized alloca in the entry block, it is live, this is
// true because it is just a reference to the stack/frame pointer, which is
// live for the whole function.
if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
if (AI->isStaticAlloca())
return true;
// Check to see if this value is already used in the memory instruction's
// block. If so, it's already live into the block at the very least, so we
// can reasonably fold it.
return Val->isUsedInBasicBlock(MemoryInst->getParent());
}
/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
/// mode of the machine to fold the specified instruction into a load or store
/// that ultimately uses it. However, the specified instruction has multiple
/// uses. Given this, it may actually increase register pressure to fold it
/// into the load. For example, consider this code:
///
/// X = ...
/// Y = X+1
/// use(Y) -> nonload/store
/// Z = Y+1
/// load Z
///
/// In this case, Y has multiple uses, and can be folded into the load of Z
/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
/// number of computations either.
///
/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
/// X was live across 'load Z' for other reasons, we actually *would* want to
/// fold the addressing mode in the Z case. This would make Y die earlier.
bool AddressingModeMatcher::
IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
ExtAddrMode &AMAfter) {
if (IgnoreProfitability) return true;
// AMBefore is the addressing mode before this instruction was folded into it,
// and AMAfter is the addressing mode after the instruction was folded. Get
// the set of registers referenced by AMAfter and subtract out those
// referenced by AMBefore: this is the set of values which folding in this
// address extends the lifetime of.
//
// Note that there are only two potential values being referenced here,
// BaseReg and ScaleReg (global addresses are always available, as are any
// folded immediates).
Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
// If the BaseReg or ScaledReg was referenced by the previous addrmode, their
// lifetime wasn't extended by adding this instruction.
if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
BaseReg = 0;
if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
ScaledReg = 0;
// If folding this instruction (and it's subexprs) didn't extend any live
// ranges, we're ok with it.
if (BaseReg == 0 && ScaledReg == 0)
return true;
// If all uses of this instruction are ultimately load/store/inlineasm's,
// check to see if their addressing modes will include this instruction. If
// so, we can fold it into all uses, so it doesn't matter if it has multiple
// uses.
SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
SmallPtrSet<Instruction*, 16> ConsideredInsts;
if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
return false; // Has a non-memory, non-foldable use!
// Now that we know that all uses of this instruction are part of a chain of
// computation involving only operations that could theoretically be folded
// into a memory use, loop over each of these uses and see if they could
// *actually* fold the instruction.
SmallVector<Instruction*, 32> MatchedAddrModeInsts;
for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
Instruction *User = MemoryUses[i].first;
unsigned OpNo = MemoryUses[i].second;
// Get the access type of this use. If the use isn't a pointer, we don't
// know what it accesses.
Value *Address = User->getOperand(OpNo);
if (!Address->getType()->isPointerTy())
return false;
Type *AddressAccessTy =
cast<PointerType>(Address->getType())->getElementType();
// Do a match against the root of this address, ignoring profitability. This
// will tell us if the addressing mode for the memory operation will
// *actually* cover the shared instruction.
ExtAddrMode Result;
AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
MemoryInst, Result);
Matcher.IgnoreProfitability = true;
bool Success = Matcher.MatchAddr(Address, 0);
(void)Success; assert(Success && "Couldn't select *anything*?");
// If the match didn't cover I, then it won't be shared by it.
if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
I) == MatchedAddrModeInsts.end())
return false;
MatchedAddrModeInsts.clear();
}
return true;
}