llvm/unittests/IR/InstructionsTest.cpp

444 lines
16 KiB
C++
Raw Normal View History

//===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Instructions.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Operator.h"
#include "gtest/gtest.h"
namespace llvm {
namespace {
TEST(InstructionsTest, ReturnInst) {
LLVMContext &C(getGlobalContext());
// test for PR6589
const ReturnInst* r0 = ReturnInst::Create(C);
EXPECT_EQ(r0->getNumOperands(), 0U);
EXPECT_EQ(r0->op_begin(), r0->op_end());
IntegerType* Int1 = IntegerType::get(C, 1);
Constant* One = ConstantInt::get(Int1, 1, true);
const ReturnInst* r1 = ReturnInst::Create(C, One);
EXPECT_EQ(1U, r1->getNumOperands());
User::const_op_iterator b(r1->op_begin());
EXPECT_NE(r1->op_end(), b);
EXPECT_EQ(One, *b);
EXPECT_EQ(One, r1->getOperand(0));
++b;
EXPECT_EQ(r1->op_end(), b);
// clean up
delete r0;
delete r1;
}
TEST(InstructionsTest, BranchInst) {
LLVMContext &C(getGlobalContext());
// Make a BasicBlocks
BasicBlock* bb0 = BasicBlock::Create(C);
BasicBlock* bb1 = BasicBlock::Create(C);
// Mandatory BranchInst
const BranchInst* b0 = BranchInst::Create(bb0);
EXPECT_TRUE(b0->isUnconditional());
EXPECT_FALSE(b0->isConditional());
EXPECT_EQ(1U, b0->getNumSuccessors());
// check num operands
EXPECT_EQ(1U, b0->getNumOperands());
EXPECT_NE(b0->op_begin(), b0->op_end());
EXPECT_EQ(b0->op_end(), llvm::next(b0->op_begin()));
EXPECT_EQ(b0->op_end(), llvm::next(b0->op_begin()));
IntegerType* Int1 = IntegerType::get(C, 1);
Constant* One = ConstantInt::get(Int1, 1, true);
// Conditional BranchInst
BranchInst* b1 = BranchInst::Create(bb0, bb1, One);
EXPECT_FALSE(b1->isUnconditional());
EXPECT_TRUE(b1->isConditional());
EXPECT_EQ(2U, b1->getNumSuccessors());
// check num operands
EXPECT_EQ(3U, b1->getNumOperands());
User::const_op_iterator b(b1->op_begin());
// check COND
EXPECT_NE(b, b1->op_end());
EXPECT_EQ(One, *b);
EXPECT_EQ(One, b1->getOperand(0));
EXPECT_EQ(One, b1->getCondition());
++b;
// check ELSE
EXPECT_EQ(bb1, *b);
EXPECT_EQ(bb1, b1->getOperand(1));
EXPECT_EQ(bb1, b1->getSuccessor(1));
++b;
// check THEN
EXPECT_EQ(bb0, *b);
EXPECT_EQ(bb0, b1->getOperand(2));
EXPECT_EQ(bb0, b1->getSuccessor(0));
++b;
EXPECT_EQ(b1->op_end(), b);
// clean up
delete b0;
delete b1;
delete bb0;
delete bb1;
}
TEST(InstructionsTest, CastInst) {
LLVMContext &C(getGlobalContext());
Type *Int8Ty = Type::getInt8Ty(C);
Type *Int16Ty = Type::getInt16Ty(C);
Type *Int32Ty = Type::getInt32Ty(C);
Type *Int64Ty = Type::getInt64Ty(C);
Type *V8x8Ty = VectorType::get(Int8Ty, 8);
Type *V8x64Ty = VectorType::get(Int64Ty, 8);
Type *X86MMXTy = Type::getX86_MMXTy(C);
Type *HalfTy = Type::getHalfTy(C);
Type *FloatTy = Type::getFloatTy(C);
Type *DoubleTy = Type::getDoubleTy(C);
Type *V2Int32Ty = VectorType::get(Int32Ty, 2);
Type *V2Int64Ty = VectorType::get(Int64Ty, 2);
Type *V4Int16Ty = VectorType::get(Int16Ty, 4);
Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
Type *Int64PtrTy = PointerType::get(Int64Ty, 0);
Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1);
Type *V2Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 2);
Type *V2Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 2);
Type *V4Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 4);
Type *V4Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 4);
Type *V2Int64PtrTy = VectorType::get(Int64PtrTy, 2);
Type *V2Int32PtrTy = VectorType::get(Int32PtrTy, 2);
const Constant* c8 = Constant::getNullValue(V8x8Ty);
const Constant* c64 = Constant::getNullValue(V8x64Ty);
EXPECT_TRUE(CastInst::isCastable(V8x8Ty, X86MMXTy));
EXPECT_TRUE(CastInst::isCastable(X86MMXTy, V8x8Ty));
EXPECT_FALSE(CastInst::isCastable(Int64Ty, X86MMXTy));
EXPECT_TRUE(CastInst::isCastable(V8x64Ty, V8x8Ty));
EXPECT_TRUE(CastInst::isCastable(V8x8Ty, V8x64Ty));
EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true));
EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true));
EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy));
EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy));
EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty));
EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty));
// Check address space casts are rejected since we don't know the sizes here
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty));
// Test mismatched number of elements for pointers
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy));
EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy));
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty));
EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy));
EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty));
// Check that assertion is not hit when creating a cast with a vector of
// pointers
// First form
BasicBlock *BB = BasicBlock::Create(C);
Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy);
CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB);
// Second form
CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty);
}
TEST(InstructionsTest, VectorGep) {
LLVMContext &C(getGlobalContext());
// Type Definitions
PointerType *Ptri8Ty = PointerType::get(IntegerType::get(C, 8), 0);
PointerType *Ptri32Ty = PointerType::get(IntegerType::get(C, 32), 0);
VectorType *V2xi8PTy = VectorType::get(Ptri8Ty, 2);
VectorType *V2xi32PTy = VectorType::get(Ptri32Ty, 2);
// Test different aspects of the vector-of-pointers type
// and GEPs which use this type.
ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492));
ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948));
std::vector<Constant*> ConstVa(2, Ci32a);
std::vector<Constant*> ConstVb(2, Ci32b);
Constant *C2xi32a = ConstantVector::get(ConstVa);
Constant *C2xi32b = ConstantVector::get(ConstVb);
CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy);
CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy);
ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB);
ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB);
EXPECT_NE(ICmp0, ICmp1); // suppress warning.
BasicBlock* BB0 = BasicBlock::Create(C);
// Test InsertAtEnd ICmpInst constructor.
ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB);
EXPECT_NE(ICmp0, ICmp2); // suppress warning.
GetElementPtrInst *Gep0 = GetElementPtrInst::Create(PtrVecA, C2xi32a);
GetElementPtrInst *Gep1 = GetElementPtrInst::Create(PtrVecA, C2xi32b);
GetElementPtrInst *Gep2 = GetElementPtrInst::Create(PtrVecB, C2xi32a);
GetElementPtrInst *Gep3 = GetElementPtrInst::Create(PtrVecB, C2xi32b);
CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy);
CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy);
CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy);
CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy);
Value *S0 = BTC0->stripPointerCasts();
Value *S1 = BTC1->stripPointerCasts();
Value *S2 = BTC2->stripPointerCasts();
Value *S3 = BTC3->stripPointerCasts();
EXPECT_NE(S0, Gep0);
EXPECT_NE(S1, Gep1);
EXPECT_NE(S2, Gep2);
EXPECT_NE(S3, Gep3);
int64_t Offset;
DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3"
"2:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80"
":128:128-n8:16:32:64-S128");
// Make sure we don't crash
GetPointerBaseWithConstantOffset(Gep0, Offset, &TD);
GetPointerBaseWithConstantOffset(Gep1, Offset, &TD);
GetPointerBaseWithConstantOffset(Gep2, Offset, &TD);
GetPointerBaseWithConstantOffset(Gep3, Offset, &TD);
// Gep of Geps
GetElementPtrInst *GepII0 = GetElementPtrInst::Create(Gep0, C2xi32b);
GetElementPtrInst *GepII1 = GetElementPtrInst::Create(Gep1, C2xi32a);
GetElementPtrInst *GepII2 = GetElementPtrInst::Create(Gep2, C2xi32b);
GetElementPtrInst *GepII3 = GetElementPtrInst::Create(Gep3, C2xi32a);
EXPECT_EQ(GepII0->getNumIndices(), 1u);
EXPECT_EQ(GepII1->getNumIndices(), 1u);
EXPECT_EQ(GepII2->getNumIndices(), 1u);
EXPECT_EQ(GepII3->getNumIndices(), 1u);
EXPECT_FALSE(GepII0->hasAllZeroIndices());
EXPECT_FALSE(GepII1->hasAllZeroIndices());
EXPECT_FALSE(GepII2->hasAllZeroIndices());
EXPECT_FALSE(GepII3->hasAllZeroIndices());
delete GepII0;
delete GepII1;
delete GepII2;
delete GepII3;
delete BTC0;
delete BTC1;
delete BTC2;
delete BTC3;
delete Gep0;
delete Gep1;
delete Gep2;
delete Gep3;
ICmp2->eraseFromParent();
delete BB0;
delete ICmp0;
delete ICmp1;
delete PtrVecA;
delete PtrVecB;
}
TEST(InstructionsTest, FPMathOperator) {
LLVMContext &Context = getGlobalContext();
IRBuilder<> Builder(Context);
MDBuilder MDHelper(Context);
Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
MDNode *MD1 = MDHelper.createFPMath(1.0);
Value *V1 = Builder.CreateFAdd(I, I, "", MD1);
EXPECT_TRUE(isa<FPMathOperator>(V1));
FPMathOperator *O1 = cast<FPMathOperator>(V1);
EXPECT_EQ(O1->getFPAccuracy(), 1.0);
delete V1;
delete I;
}
TEST(InstructionsTest, isEliminableCastPair) {
LLVMContext &C(getGlobalContext());
Type* Int16Ty = Type::getInt16Ty(C);
Type* Int32Ty = Type::getInt32Ty(C);
Type* Int64Ty = Type::getInt64Ty(C);
Type* Int64PtrTy = Type::getInt64PtrTy(C);
// Source and destination pointers have same size -> bitcast.
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
CastInst::IntToPtr,
Int64PtrTy, Int64Ty, Int64PtrTy,
Int32Ty, 0, Int32Ty),
CastInst::BitCast);
// Source and destination have unknown sizes, but the same address space and
// the intermediate int is the maximum pointer size -> bitcast
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
CastInst::IntToPtr,
Int64PtrTy, Int64Ty, Int64PtrTy,
0, 0, 0),
CastInst::BitCast);
// Source and destination have unknown sizes, but the same address space and
// the intermediate int is not the maximum pointer size -> nothing
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
CastInst::IntToPtr,
Int64PtrTy, Int32Ty, Int64PtrTy,
0, 0, 0),
0U);
// Middle pointer big enough -> bitcast.
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::PtrToInt,
Int64Ty, Int64PtrTy, Int64Ty,
0, Int64Ty, 0),
CastInst::BitCast);
// Middle pointer too small -> fail.
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::PtrToInt,
Int64Ty, Int64PtrTy, Int64Ty,
0, Int32Ty, 0),
0U);
// Test that we don't eliminate bitcasts between different address spaces,
// or if we don't have available pointer size information.
DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16"
"-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64"
"-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128");
Type* Int64PtrTyAS1 = Type::getInt64PtrTy(C, 1);
Type* Int64PtrTyAS2 = Type::getInt64PtrTy(C, 2);
IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1);
IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2);
// Fail since the ptr int types are not provided
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::BitCast,
Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2,
0, 0, 0),
0U);
// Fail since the the bitcast is between different sized address spaces
EXPECT_EQ(CastInst::isEliminableCastPair(
CastInst::IntToPtr,
CastInst::BitCast,
Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2,
0, Int16SizePtr, Int64SizePtr),
0U);
// Fail since the the bitcast is between different sized address spaces
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::BitCast,
Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2,
0, Int16SizePtr, Int64SizePtr),
0U);
// Pass since the bitcast address spaces are the same
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::BitCast,
Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1,
0, 0, 0),
CastInst::IntToPtr);
// Fail without known pointer sizes and different address spaces
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::BitCast,
CastInst::PtrToInt,
Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty,
0, 0, 0),
0U);
// Pass since the address spaces are the same, even though the pointer sizes
// are unknown
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::BitCast,
CastInst::PtrToInt,
Int64PtrTyAS1, Int64PtrTyAS1, Int32Ty,
0, 0, 0),
Instruction::PtrToInt);
// Fail since the bitcast is the wrong size
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::BitCast,
CastInst::PtrToInt,
Int64PtrTyAS1, Int64PtrTyAS2, Int64Ty,
Int16SizePtr, Int64SizePtr, 0),
0U);
}
} // end anonymous namespace
} // end namespace llvm