llvm/lib/Target/ARM/ARM.h

54 lines
1.7 KiB
C
Raw Normal View History

//===-- ARM.h - Top-level interface for ARM representation ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the entry points for global functions defined in the LLVM
// ARM back-end.
//
//===----------------------------------------------------------------------===//
#ifndef TARGET_ARM_H
#define TARGET_ARM_H
#include "MCTargetDesc/ARMBaseInfo.h"
#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
namespace llvm {
class ARMAsmPrinter;
class ARMBaseTargetMachine;
class FunctionPass;
class JITCodeEmitter;
class MachineInstr;
class MCInst;
FunctionPass *createARMISelDag(ARMBaseTargetMachine &TM,
CodeGenOpt::Level OptLevel);
FunctionPass *createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
JITCodeEmitter &JCE);
FunctionPass *createARMLoadStoreOptimizationPass(bool PreAlloc = false);
FunctionPass *createARMExpandPseudoPass();
FunctionPass *createARMGlobalMergePass(const TargetLowering* tli);
FunctionPass *createARMConstantIslandPass();
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120960 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-05 22:04:16 +00:00
FunctionPass *createMLxExpansionPass();
FunctionPass *createThumb2ITBlockPass();
FunctionPass *createThumb2SizeReductionPass();
void LowerARMMachineInstrToMCInst(const MachineInstr *MI, MCInst &OutMI,
ARMAsmPrinter &AP);
} // end namespace llvm;
#endif