llvm/lib/Target/ARM/ARMFastISel.cpp

1230 lines
42 KiB
C++
Raw Normal View History

//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ARM-specific support for the FastISel class. Some
// of the target-specific code is generated by tablegen in the file
// ARMGenFastISel.inc, which is #included here.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMCallingConv.h"
#include "ARMRegisterInfo.h"
#include "ARMTargetMachine.h"
#include "ARMSubtarget.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
static cl::opt<bool>
EnableARMFastISel("arm-fast-isel",
cl::desc("Turn on experimental ARM fast-isel support"),
cl::init(false), cl::Hidden);
namespace {
class ARMFastISel : public FastISel {
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
/// make the right decision when generating code for different targets.
const ARMSubtarget *Subtarget;
const TargetMachine &TM;
const TargetInstrInfo &TII;
const TargetLowering &TLI;
const ARMFunctionInfo *AFI;
// Convenience variable to avoid checking all the time.
bool isThumb;
public:
explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
: FastISel(funcInfo),
TM(funcInfo.MF->getTarget()),
TII(*TM.getInstrInfo()),
TLI(*TM.getTargetLowering()) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
isThumb = AFI->isThumbFunction();
}
// Code from FastISel.cpp.
virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
const TargetRegisterClass *RC);
virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill);
virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
uint64_t Imm);
virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
const ConstantFP *FPImm);
virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
uint64_t Imm);
virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
uint64_t Imm);
virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
unsigned Op0, bool Op0IsKill,
uint32_t Idx);
// Backend specific FastISel code.
virtual bool TargetSelectInstruction(const Instruction *I);
virtual unsigned TargetMaterializeConstant(const Constant *C);
#include "ARMGenFastISel.inc"
// Instruction selection routines.
private:
virtual bool SelectLoad(const Instruction *I);
virtual bool SelectStore(const Instruction *I);
virtual bool SelectBranch(const Instruction *I);
virtual bool SelectCmp(const Instruction *I);
virtual bool SelectFPExt(const Instruction *I);
virtual bool SelectFPTrunc(const Instruction *I);
virtual bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
virtual bool SelectSIToFP(const Instruction *I);
virtual bool SelectFPToSI(const Instruction *I);
virtual bool SelectSDiv(const Instruction *I);
// Utility routines.
private:
bool isTypeLegal(const Type *Ty, EVT &VT);
bool isLoadTypeLegal(const Type *Ty, EVT &VT);
bool ARMEmitLoad(EVT VT, unsigned &ResultReg, unsigned Reg, int Offset);
bool ARMEmitStore(EVT VT, unsigned SrcReg, unsigned Reg, int Offset);
bool ARMLoadAlloca(const Instruction *I, EVT VT);
bool ARMStoreAlloca(const Instruction *I, unsigned SrcReg, EVT VT);
bool ARMComputeRegOffset(const Value *Obj, unsigned &Reg, int &Offset);
unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
unsigned ARMMaterializeInt(const Constant *C, EVT VT);
unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
// Call handling routines.
private:
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
// OptionalDef handling routines.
private:
bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
};
} // end anonymous namespace
#include "ARMGenCallingConv.inc"
// DefinesOptionalPredicate - This is different from DefinesPredicate in that
// we don't care about implicit defs here, just places we'll need to add a
// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
const TargetInstrDesc &TID = MI->getDesc();
if (!TID.hasOptionalDef())
return false;
// Look to see if our OptionalDef is defining CPSR or CCR.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef()) continue;
if (MO.getReg() == ARM::CPSR)
*CPSR = true;
}
return true;
}
// If the machine is predicable go ahead and add the predicate operands, if
// it needs default CC operands add those.
const MachineInstrBuilder &
ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
MachineInstr *MI = &*MIB;
// Do we use a predicate?
if (TII.isPredicable(MI))
AddDefaultPred(MIB);
// Do we optionally set a predicate? Preds is size > 0 iff the predicate
// defines CPSR. All other OptionalDefines in ARM are the CCR register.
bool CPSR = false;
if (DefinesOptionalPredicate(MI, &CPSR)) {
if (CPSR)
AddDefaultT1CC(MIB);
else
AddDefaultCC(MIB);
}
return MIB;
}
unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
const TargetRegisterClass* RC) {
unsigned ResultReg = createResultReg(RC);
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill) {
unsigned ResultReg = createResultReg(RC);
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill));
else {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(II.ImplicitDefs[0]));
}
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill) {
unsigned ResultReg = createResultReg(RC);
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill));
else {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(II.ImplicitDefs[0]));
}
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
uint64_t Imm) {
unsigned ResultReg = createResultReg(RC);
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addImm(Imm));
else {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addImm(Imm));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(II.ImplicitDefs[0]));
}
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
const ConstantFP *FPImm) {
unsigned ResultReg = createResultReg(RC);
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addFPImm(FPImm));
else {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addFPImm(FPImm));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(II.ImplicitDefs[0]));
}
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
uint64_t Imm) {
unsigned ResultReg = createResultReg(RC);
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill)
.addImm(Imm));
else {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill)
.addImm(Imm));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(II.ImplicitDefs[0]));
}
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
uint64_t Imm) {
unsigned ResultReg = createResultReg(RC);
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addImm(Imm));
else {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addImm(Imm));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(II.ImplicitDefs[0]));
}
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
unsigned Op0, bool Op0IsKill,
uint32_t Idx) {
unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
"Cannot yet extract from physregs");
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
DL, TII.get(TargetOpcode::COPY), ResultReg)
.addReg(Op0, getKillRegState(Op0IsKill), Idx));
return ResultReg;
}
// TODO: Don't worry about 64-bit now, but when this is fixed remove the
// checks from the various callers.
unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
if (VT.getSimpleVT().SimpleTy == MVT::f64) return 0;
unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::VMOVRS), MoveReg)
.addReg(SrcReg));
return MoveReg;
}
unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
if (VT.getSimpleVT().SimpleTy == MVT::i64) return 0;
unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::VMOVSR), MoveReg)
.addReg(SrcReg));
return MoveReg;
}
// For double width floating point we need to materialize two constants
// (the high and the low) into integer registers then use a move to get
// the combined constant into an FP reg.
unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
const APFloat Val = CFP->getValueAPF();
bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64;
// This checks to see if we can use VFP3 instructions to materialize
// a constant, otherwise we have to go through the constant pool.
if (TLI.isFPImmLegal(Val, VT)) {
unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
DestReg)
.addFPImm(CFP));
return DestReg;
}
// Require VFP2 for loading fp constants.
if (!Subtarget->hasVFP2()) return false;
// MachineConstantPool wants an explicit alignment.
unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
if (Align == 0) {
// TODO: Figure out if this is correct.
Align = TD.getTypeAllocSize(CFP->getType());
}
unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
// The extra reg is for addrmode5.
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
DestReg)
.addConstantPoolIndex(Idx)
.addReg(0));
return DestReg;
}
unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
// For now 32-bit only.
if (VT.getSimpleVT().SimpleTy != MVT::i32) return false;
// MachineConstantPool wants an explicit alignment.
unsigned Align = TD.getPrefTypeAlignment(C->getType());
if (Align == 0) {
// TODO: Figure out if this is correct.
Align = TD.getTypeAllocSize(C->getType());
}
unsigned Idx = MCP.getConstantPoolIndex(C, Align);
unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
if (isThumb)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::t2LDRpci), DestReg)
.addConstantPoolIndex(Idx));
else
// The extra reg and immediate are for addrmode2.
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::LDRcp), DestReg)
.addConstantPoolIndex(Idx)
.addReg(0).addImm(0));
return DestReg;
}
unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
EVT VT = TLI.getValueType(C->getType(), true);
// Only handle simple types.
if (!VT.isSimple()) return 0;
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
return ARMMaterializeFP(CFP, VT);
return ARMMaterializeInt(C, VT);
}
bool ARMFastISel::isTypeLegal(const Type *Ty, EVT &VT) {
VT = TLI.getValueType(Ty, true);
// Only handle simple types.
if (VT == MVT::Other || !VT.isSimple()) return false;
// Handle all legal types, i.e. a register that will directly hold this
// value.
return TLI.isTypeLegal(VT);
}
bool ARMFastISel::isLoadTypeLegal(const Type *Ty, EVT &VT) {
if (isTypeLegal(Ty, VT)) return true;
// If this is a type than can be sign or zero-extended to a basic operation
// go ahead and accept it now.
if (VT == MVT::i8 || VT == MVT::i16)
return true;
return false;
}
// Computes the Reg+Offset to get to an object.
bool ARMFastISel::ARMComputeRegOffset(const Value *Obj, unsigned &Reg,
int &Offset) {
// Some boilerplate from the X86 FastISel.
const User *U = NULL;
unsigned Opcode = Instruction::UserOp1;
if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
// Don't walk into other basic blocks; it's possible we haven't
// visited them yet, so the instructions may not yet be assigned
// virtual registers.
if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB)
return false;
Opcode = I->getOpcode();
U = I;
} else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
Opcode = C->getOpcode();
U = C;
}
if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
if (Ty->getAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
switch (Opcode) {
default:
break;
case Instruction::Alloca: {
assert(false && "Alloca should have been handled earlier!");
return false;
}
}
// FIXME: Handle global variables.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
(void)GV;
return false;
}
// Try to get this in a register if nothing else has worked.
Reg = getRegForValue(Obj);
if (Reg == 0) return false;
// Since the offset may be too large for the load instruction
// get the reg+offset into a register.
// TODO: Verify the additions work, otherwise we'll need to add the
// offset instead of 0 to the instructions and do all sorts of operand
// munging.
// TODO: Optimize this somewhat.
if (Offset != 0) {
ARMCC::CondCodes Pred = ARMCC::AL;
unsigned PredReg = 0;
if (!isThumb)
emitARMRegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
Reg, Reg, Offset, Pred, PredReg,
static_cast<const ARMBaseInstrInfo&>(TII));
else {
assert(AFI->isThumb2Function());
emitT2RegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
Reg, Reg, Offset, Pred, PredReg,
static_cast<const ARMBaseInstrInfo&>(TII));
}
}
return true;
}
bool ARMFastISel::ARMLoadAlloca(const Instruction *I, EVT VT) {
Value *Op0 = I->getOperand(0);
// Verify it's an alloca.
if (const AllocaInst *AI = dyn_cast<AllocaInst>(Op0)) {
DenseMap<const AllocaInst*, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end()) {
TargetRegisterClass* RC = TLI.getRegClassFor(VT);
unsigned ResultReg = createResultReg(RC);
TII.loadRegFromStackSlot(*FuncInfo.MBB, *FuncInfo.InsertPt,
ResultReg, SI->second, RC,
TM.getRegisterInfo());
UpdateValueMap(I, ResultReg);
return true;
}
}
return false;
}
bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg,
unsigned Reg, int Offset) {
assert(VT.isSimple() && "Non-simple types are invalid here!");
unsigned Opc;
bool isFloat = false;
switch (VT.getSimpleVT().SimpleTy) {
default:
// This is mostly going to be Neon/vector support.
return false;
case MVT::i16:
Opc = isThumb ? ARM::tLDRH : ARM::LDRH;
VT = MVT::i32;
break;
case MVT::i8:
Opc = isThumb ? ARM::tLDRB : ARM::LDRB;
VT = MVT::i32;
break;
case MVT::i32:
Opc = isThumb ? ARM::tLDR : ARM::LDR;
break;
case MVT::f32:
Opc = ARM::VLDRS;
isFloat = true;
break;
case MVT::f64:
Opc = ARM::VLDRD;
isFloat = true;
break;
}
ResultReg = createResultReg(TLI.getRegClassFor(VT));
// TODO: Fix the Addressing modes so that these can share some code.
// Since this is a Thumb1 load this will work in Thumb1 or 2 mode.
// The thumb addressing mode has operands swapped from the arm addressing
// mode, the floating point one only has two operands.
if (isFloat)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc), ResultReg)
.addReg(Reg).addImm(Offset));
else if (isThumb)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc), ResultReg)
.addReg(Reg).addImm(Offset).addReg(0));
else
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc), ResultReg)
.addReg(Reg).addReg(0).addImm(Offset));
return true;
}
bool ARMFastISel::SelectLoad(const Instruction *I) {
// Verify we have a legal type before going any further.
EVT VT;
if (!isLoadTypeLegal(I->getType(), VT))
return false;
// If we're an alloca we know we have a frame index and can emit the load
// directly in short order.
if (ARMLoadAlloca(I, VT))
return true;
// Our register and offset with innocuous defaults.
unsigned Reg = 0;
int Offset = 0;
// See if we can handle this as Reg + Offset
if (!ARMComputeRegOffset(I->getOperand(0), Reg, Offset))
return false;
unsigned ResultReg;
if (!ARMEmitLoad(VT, ResultReg, Reg, Offset /* 0 */)) return false;
UpdateValueMap(I, ResultReg);
return true;
}
bool ARMFastISel::ARMStoreAlloca(const Instruction *I, unsigned SrcReg, EVT VT){
Value *Op1 = I->getOperand(1);
// Verify it's an alloca.
if (const AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
DenseMap<const AllocaInst*, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end()) {
TargetRegisterClass* RC = TLI.getRegClassFor(VT);
assert(SrcReg != 0 && "Nothing to store!");
TII.storeRegToStackSlot(*FuncInfo.MBB, *FuncInfo.InsertPt,
SrcReg, true /*isKill*/, SI->second, RC,
TM.getRegisterInfo());
return true;
}
}
return false;
}
bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg,
unsigned DstReg, int Offset) {
unsigned StrOpc;
bool isFloat = false;
switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8: StrOpc = isThumb ? ARM::tSTRB : ARM::STRB; break;
case MVT::i16: StrOpc = isThumb ? ARM::tSTRH : ARM::STRH; break;
case MVT::i32: StrOpc = isThumb ? ARM::tSTR : ARM::STR; break;
case MVT::f32:
if (!Subtarget->hasVFP2()) return false;
StrOpc = ARM::VSTRS;
isFloat = true;
break;
case MVT::f64:
if (!Subtarget->hasVFP2()) return false;
StrOpc = ARM::VSTRD;
isFloat = true;
break;
}
// The thumb addressing mode has operands swapped from the arm addressing
// mode, the floating point one only has two operands.
if (isFloat)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(StrOpc), SrcReg)
.addReg(DstReg).addImm(Offset));
else if (isThumb)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(StrOpc), SrcReg)
.addReg(DstReg).addImm(Offset).addReg(0));
else
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(StrOpc), SrcReg)
.addReg(DstReg).addReg(0).addImm(Offset));
return true;
}
bool ARMFastISel::SelectStore(const Instruction *I) {
Value *Op0 = I->getOperand(0);
unsigned SrcReg = 0;
// Yay type legalization
EVT VT;
if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
return false;
// Get the value to be stored into a register.
SrcReg = getRegForValue(Op0);
if (SrcReg == 0)
return false;
// If we're an alloca we know we have a frame index and can emit the store
// quickly.
if (ARMStoreAlloca(I, SrcReg, VT))
return true;
// Our register and offset with innocuous defaults.
unsigned Reg = 0;
int Offset = 0;
// See if we can handle this as Reg + Offset
if (!ARMComputeRegOffset(I->getOperand(1), Reg, Offset))
return false;
if (!ARMEmitStore(VT, SrcReg, Reg, Offset /* 0 */)) return false;
return true;
}
static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
switch (Pred) {
// Needs two compares...
case CmpInst::FCMP_ONE:
case CmpInst::FCMP_UEQ:
default:
assert(false && "Unhandled CmpInst::Predicate!");
return ARMCC::AL;
case CmpInst::ICMP_EQ:
case CmpInst::FCMP_OEQ:
return ARMCC::EQ;
case CmpInst::ICMP_SGT:
case CmpInst::FCMP_OGT:
return ARMCC::GT;
case CmpInst::ICMP_SGE:
case CmpInst::FCMP_OGE:
return ARMCC::GE;
case CmpInst::ICMP_UGT:
case CmpInst::FCMP_UGT:
return ARMCC::HI;
case CmpInst::FCMP_OLT:
return ARMCC::MI;
case CmpInst::ICMP_ULE:
case CmpInst::FCMP_OLE:
return ARMCC::LS;
case CmpInst::FCMP_ORD:
return ARMCC::VC;
case CmpInst::FCMP_UNO:
return ARMCC::VS;
case CmpInst::FCMP_UGE:
return ARMCC::PL;
case CmpInst::ICMP_SLT:
case CmpInst::FCMP_ULT:
return ARMCC::LT;
case CmpInst::ICMP_SLE:
case CmpInst::FCMP_ULE:
return ARMCC::LE;
case CmpInst::FCMP_UNE:
case CmpInst::ICMP_NE:
return ARMCC::NE;
case CmpInst::ICMP_UGE:
return ARMCC::HS;
case CmpInst::ICMP_ULT:
return ARMCC::LO;
}
}
bool ARMFastISel::SelectBranch(const Instruction *I) {
const BranchInst *BI = cast<BranchInst>(I);
MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
// Simple branch support.
// TODO: Hopefully we've already handled the condition since we won't
// have left an update in the value map. See the TODO below in SelectCMP.
Value *Cond = BI->getCondition();
unsigned CondReg = getRegForValue(Cond);
if (CondReg == 0) return false;
CmpInst *CI = dyn_cast<CmpInst>(Cond);
if (!CI) return false;
// Get the compare predicate.
ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
// We may not handle every CC for now.
if (ARMPred == ARMCC::AL) return false;
unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
.addMBB(TBB).addImm(ARMPred).addReg(CondReg);
FastEmitBranch(FBB, DL);
FuncInfo.MBB->addSuccessor(TBB);
return true;
}
bool ARMFastISel::SelectCmp(const Instruction *I) {
const CmpInst *CI = cast<CmpInst>(I);
EVT VT;
const Type *Ty = CI->getOperand(0)->getType();
if (!isTypeLegal(Ty, VT))
return false;
bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
if (isFloat && !Subtarget->hasVFP2())
return false;
unsigned CmpOpc;
unsigned DestReg;
switch (VT.getSimpleVT().SimpleTy) {
default: return false;
// TODO: Verify compares.
case MVT::f32:
CmpOpc = ARM::VCMPES;
DestReg = ARM::FPSCR;
break;
case MVT::f64:
CmpOpc = ARM::VCMPED;
DestReg = ARM::FPSCR;
break;
case MVT::i32:
CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
DestReg = ARM::CPSR;
break;
}
unsigned Arg1 = getRegForValue(CI->getOperand(0));
if (Arg1 == 0) return false;
unsigned Arg2 = getRegForValue(CI->getOperand(1));
if (Arg2 == 0) return false;
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
.addReg(Arg1).addReg(Arg2));
// For floating point we need to move the result to a comparison register
// that we can then use for branches.
if (isFloat)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::FMSTAT)));
// Update the value to the implicit def reg.
UpdateValueMap(I, DestReg);
return true;
}
bool ARMFastISel::SelectFPExt(const Instruction *I) {
// Make sure we have VFP and that we're extending float to double.
if (!Subtarget->hasVFP2()) return false;
Value *V = I->getOperand(0);
if (!I->getType()->isDoubleTy() ||
!V->getType()->isFloatTy()) return false;
unsigned Op = getRegForValue(V);
if (Op == 0) return false;
unsigned Result = createResultReg(ARM::DPRRegisterClass);
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::VCVTDS), Result)
.addReg(Op));
UpdateValueMap(I, Result);
return true;
}
bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
// Make sure we have VFP and that we're truncating double to float.
if (!Subtarget->hasVFP2()) return false;
Value *V = I->getOperand(0);
if (!I->getType()->isFloatTy() ||
!V->getType()->isDoubleTy()) return false;
unsigned Op = getRegForValue(V);
if (Op == 0) return false;
unsigned Result = createResultReg(ARM::SPRRegisterClass);
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::VCVTSD), Result)
.addReg(Op));
UpdateValueMap(I, Result);
return true;
}
bool ARMFastISel::SelectSIToFP(const Instruction *I) {
// Make sure we have VFP.
if (!Subtarget->hasVFP2()) return false;
EVT DstVT;
const Type *Ty = I->getType();
if (!isTypeLegal(Ty, DstVT))
return false;
unsigned Op = getRegForValue(I->getOperand(0));
if (Op == 0) return false;
// The conversion routine works on fp-reg to fp-reg and the operand above
// was an integer, move it to the fp registers if possible.
unsigned FP = ARMMoveToFPReg(DstVT, Op);
if (FP == 0) return false;
unsigned Opc;
if (Ty->isFloatTy()) Opc = ARM::VSITOS;
else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
else return 0;
unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
ResultReg)
.addReg(FP));
UpdateValueMap(I, ResultReg);
return true;
}
bool ARMFastISel::SelectFPToSI(const Instruction *I) {
// Make sure we have VFP.
if (!Subtarget->hasVFP2()) return false;
EVT DstVT;
const Type *RetTy = I->getType();
if (!isTypeLegal(RetTy, DstVT))
return false;
unsigned Op = getRegForValue(I->getOperand(0));
if (Op == 0) return false;
unsigned Opc;
const Type *OpTy = I->getOperand(0)->getType();
if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
else return 0;
EVT OpVT = TLI.getValueType(OpTy, true);
unsigned ResultReg = createResultReg(TLI.getRegClassFor(OpVT));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
ResultReg)
.addReg(Op));
// This result needs to be in an integer register, but the conversion only
// takes place in fp-regs.
unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
if (IntReg == 0) return false;
UpdateValueMap(I, IntReg);
return true;
}
bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
EVT VT = TLI.getValueType(I->getType(), true);
// We can get here in the case when we want to use NEON for our fp
// operations, but can't figure out how to. Just use the vfp instructions
// if we have them.
// FIXME: It'd be nice to use NEON instructions.
const Type *Ty = I->getType();
bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
if (isFloat && !Subtarget->hasVFP2())
return false;
unsigned Op1 = getRegForValue(I->getOperand(0));
if (Op1 == 0) return false;
unsigned Op2 = getRegForValue(I->getOperand(1));
if (Op2 == 0) return false;
unsigned Opc;
bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64 ||
VT.getSimpleVT().SimpleTy == MVT::i64;
switch (ISDOpcode) {
default: return false;
case ISD::FADD:
Opc = is64bit ? ARM::VADDD : ARM::VADDS;
break;
case ISD::FSUB:
Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
break;
case ISD::FMUL:
Opc = is64bit ? ARM::VMULD : ARM::VMULS;
break;
}
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc), ResultReg)
.addReg(Op1).addReg(Op2));
UpdateValueMap(I, ResultReg);
return true;
}
// Call Handling Code
// This is largely taken directly from CCAssignFnForNode - we don't support
// varargs in FastISel so that part has been removed.
// TODO: We may not support all of this.
CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
switch (CC) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
// Use target triple & subtarget features to do actual dispatch.
if (Subtarget->isAAPCS_ABI()) {
if (Subtarget->hasVFP2() &&
FloatABIType == FloatABI::Hard)
return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
else
return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
} else
return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
case CallingConv::ARM_AAPCS_VFP:
return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
case CallingConv::ARM_AAPCS:
return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
case CallingConv::ARM_APCS:
return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
}
}
// A quick function that will emit a call for a named libcall in F with the
// vector of passed arguments for the Instruction in I. We can assume that we
// can emit a call for any libcall we can produce. This is an abridged version
// of the full call infrastructure since we won't need to worry about things
// like computed function pointers or strange arguments at call sites.
// TODO: Try to unify this and the normal call bits for ARM, then try to unify
// with X86.
bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
// Handle *simple* calls for now.
const Type *RetTy = I->getType();
EVT RetVT;
if (RetTy->isVoidTy())
RetVT = MVT::isVoid;
else if (!isTypeLegal(RetTy, RetVT))
return false;
// For now we're using BLX etc on the assumption that we have v5t ops.
if (!Subtarget->hasV5TOps()) return false;
// Abridged from the X86 FastISel call selection mechanism
SmallVector<Value*, 8> Args;
SmallVector<unsigned, 8> ArgRegs;
SmallVector<EVT, 8> ArgVTs;
SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
Args.reserve(I->getNumOperands());
ArgRegs.reserve(I->getNumOperands());
ArgVTs.reserve(I->getNumOperands());
ArgFlags.reserve(I->getNumOperands());
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
Value *Op = I->getOperand(i);
unsigned Arg = getRegForValue(Op);
if (Arg == 0) return false;
const Type *ArgTy = Op->getType();
EVT ArgVT;
if (!isTypeLegal(ArgTy, ArgVT)) return false;
ISD::ArgFlagsTy Flags;
unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
Flags.setOrigAlign(OriginalAlignment);
Args.push_back(Op);
ArgRegs.push_back(Arg);
ArgVTs.push_back(ArgVT);
ArgFlags.push_back(Flags);
}
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, false, TM, ArgLocs,
I->getParent()->getParent()->getContext());
CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
// Issue CALLSEQ_START
unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown))
.addImm(NumBytes);
// Process the args.
SmallVector<unsigned, 4> RegArgs;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
unsigned Arg = ArgRegs[VA.getValNo()];
EVT ArgVT = ArgVTs[VA.getValNo()];
// Should we ever have to promote?
switch (VA.getLocInfo()) {
case CCValAssign::Full: break;
default:
assert(false && "Handle arg promotion for libcalls?");
return false;
}
// Now copy/store arg to correct locations.
if (VA.isRegLoc()) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
VA.getLocReg())
.addReg(Arg);
RegArgs.push_back(VA.getLocReg());
} else {
// Need to store
return false;
}
}
// Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
// TODO: Turn this into the table of arm call ops.
MachineInstrBuilder MIB;
unsigned CallOpc;
if(isThumb)
CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
else
CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
.addExternalSymbol(TLI.getLibcallName(Call));
// Add implicit physical register uses to the call.
for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
MIB.addReg(RegArgs[i]);
// Issue CALLSEQ_END
unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp))
.addImm(NumBytes).addImm(0);
// Now the return value.
SmallVector<unsigned, 4> UsedRegs;
if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CC, false, TM, RVLocs,
I->getParent()->getParent()->getContext());
CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
// Copy all of the result registers out of their specified physreg.
assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
EVT CopyVT = RVLocs[0].getValVT();
TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
unsigned ResultReg = createResultReg(DstRC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
ResultReg).addReg(RVLocs[0].getLocReg());
UsedRegs.push_back(RVLocs[0].getLocReg());
// Finally update the result.
UpdateValueMap(I, ResultReg);
}
// Set all unused physreg defs as dead.
static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
return true;
}
bool ARMFastISel::SelectSDiv(const Instruction *I) {
EVT VT;
const Type *Ty = I->getType();
if (!isTypeLegal(Ty, VT))
return false;
// If we have integer div support we should have selected this automagically.
// In case we have a real miss go ahead and return false and we'll pick
// it up later.
if (Subtarget->hasDivide()) return false;
// Otherwise emit a libcall.
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
if (VT == MVT::i16)
LC = RTLIB::SDIV_I16;
else if (VT == MVT::i32)
LC = RTLIB::SDIV_I32;
else if (VT == MVT::i64)
LC = RTLIB::SDIV_I64;
else if (VT == MVT::i128)
LC = RTLIB::SDIV_I128;
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
return ARMEmitLibcall(I, LC);
}
// TODO: SoftFP support.
bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
// No Thumb-1 for now.
if (isThumb && !AFI->isThumb2Function()) return false;
switch (I->getOpcode()) {
case Instruction::Load:
return SelectLoad(I);
case Instruction::Store:
return SelectStore(I);
case Instruction::Br:
return SelectBranch(I);
case Instruction::ICmp:
case Instruction::FCmp:
return SelectCmp(I);
case Instruction::FPExt:
return SelectFPExt(I);
case Instruction::FPTrunc:
return SelectFPTrunc(I);
case Instruction::SIToFP:
return SelectSIToFP(I);
case Instruction::FPToSI:
return SelectFPToSI(I);
case Instruction::FAdd:
return SelectBinaryOp(I, ISD::FADD);
case Instruction::FSub:
return SelectBinaryOp(I, ISD::FSUB);
case Instruction::FMul:
return SelectBinaryOp(I, ISD::FMUL);
case Instruction::SDiv:
return SelectSDiv(I);
default: break;
}
return false;
}
namespace llvm {
llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
if (EnableARMFastISel) return new ARMFastISel(funcInfo);
return 0;
}
}