mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-17 00:50:58 +00:00
do not use the GCD to compute the delinearization strides
We do not need to compute the GCD anymore after we removed the constant coefficients from the terms: the terms are now all parametric expressions and there is no need to recognize constant terms that divide only a subset of the terms. We only rely on the size of the terms, i.e., the number of operands in the multiply expressions, to sort the terms and recognize the parametric dimensions. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209693 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
79facc9e29
commit
bf48d8ae51
@ -7211,82 +7211,31 @@ private:
|
||||
};
|
||||
}
|
||||
|
||||
// Find the Greatest Common Divisor of A and B.
|
||||
static const SCEV *
|
||||
findGCD(ScalarEvolution &SE, const SCEV *A, const SCEV *B) {
|
||||
|
||||
if (const SCEVConstant *CA = dyn_cast<SCEVConstant>(A))
|
||||
if (const SCEVConstant *CB = dyn_cast<SCEVConstant>(B))
|
||||
return SE.getConstant(gcd(CA, CB));
|
||||
|
||||
const SCEV *One = SE.getConstant(A->getType(), 1);
|
||||
if (isa<SCEVConstant>(A) && isa<SCEVUnknown>(B))
|
||||
return One;
|
||||
if (isa<SCEVUnknown>(A) && isa<SCEVConstant>(B))
|
||||
return One;
|
||||
|
||||
const SCEV *Q, *R;
|
||||
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(A)) {
|
||||
SmallVector<const SCEV *, 2> Qs;
|
||||
for (const SCEV *Op : M->operands())
|
||||
Qs.push_back(findGCD(SE, Op, B));
|
||||
return SE.getMulExpr(Qs);
|
||||
}
|
||||
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(B)) {
|
||||
SmallVector<const SCEV *, 2> Qs;
|
||||
for (const SCEV *Op : M->operands())
|
||||
Qs.push_back(findGCD(SE, A, Op));
|
||||
return SE.getMulExpr(Qs);
|
||||
}
|
||||
|
||||
SCEVDivision::divide(SE, A, B, &Q, &R);
|
||||
if (R->isZero())
|
||||
return B;
|
||||
|
||||
SCEVDivision::divide(SE, B, A, &Q, &R);
|
||||
if (R->isZero())
|
||||
return A;
|
||||
|
||||
return One;
|
||||
}
|
||||
|
||||
// Find the Greatest Common Divisor of all the SCEVs in Terms.
|
||||
static const SCEV *
|
||||
findGCD(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) {
|
||||
assert(Terms.size() > 0 && "Terms vector is empty");
|
||||
|
||||
const SCEV *GCD = Terms[0];
|
||||
for (const SCEV *T : Terms)
|
||||
GCD = findGCD(SE, GCD, T);
|
||||
|
||||
return GCD;
|
||||
}
|
||||
|
||||
static bool findArrayDimensionsRec(ScalarEvolution &SE,
|
||||
SmallVectorImpl<const SCEV *> &Terms,
|
||||
SmallVectorImpl<const SCEV *> &Sizes) {
|
||||
// The GCD of all Terms is the dimension of the innermost dimension.
|
||||
const SCEV *GCD = findGCD(SE, Terms);
|
||||
int Last = Terms.size() - 1;
|
||||
const SCEV *Step = Terms[Last];
|
||||
|
||||
// End of recursion.
|
||||
if (Terms.size() == 1) {
|
||||
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(GCD)) {
|
||||
if (Last == 0) {
|
||||
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
|
||||
SmallVector<const SCEV *, 2> Qs;
|
||||
for (const SCEV *Op : M->operands())
|
||||
if (!isa<SCEVConstant>(Op))
|
||||
Qs.push_back(Op);
|
||||
|
||||
GCD = SE.getMulExpr(Qs);
|
||||
Step = SE.getMulExpr(Qs);
|
||||
}
|
||||
|
||||
Sizes.push_back(GCD);
|
||||
Sizes.push_back(Step);
|
||||
return true;
|
||||
}
|
||||
|
||||
for (const SCEV *&Term : Terms) {
|
||||
// Normalize the terms before the next call to findArrayDimensionsRec.
|
||||
const SCEV *Q, *R;
|
||||
SCEVDivision::divide(SE, Term, GCD, &Q, &R);
|
||||
SCEVDivision::divide(SE, Term, Step, &Q, &R);
|
||||
|
||||
// Bail out when GCD does not evenly divide one of the terms.
|
||||
if (!R->isZero())
|
||||
@ -7305,7 +7254,7 @@ static bool findArrayDimensionsRec(ScalarEvolution &SE,
|
||||
if (!findArrayDimensionsRec(SE, Terms, Sizes))
|
||||
return false;
|
||||
|
||||
Sizes.push_back(GCD);
|
||||
Sizes.push_back(Step);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user