Coverage instrumentation which does not instrument full post-dominators
and full-dominators may skip valid paths, as the reasoning for skipping
blocks may become circular.
This patch fixes that, by only skipping
full post-dominators with multiple predecessors, as such predecessors by
definition can not be full-dominators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303827 91177308-0d34-0410-b5e6-96231b3b80d8
Coverage instrumentation has an optimization not to instrument extra
blocks, if the pass is already "accounted for" by a
successor/predecessor basic block.
However (https://github.com/google/sanitizers/issues/783) this
reasoning may become circular, which stops valid paths from having
coverage.
In the worst case this can cause fuzzing to stop working entirely.
This change simplifies logic to something which trivially can not have
such circular reasoning, as losing valid paths does not seem like a
good trade-off for a ~15% decrease in the # of instrumented basic blocks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303698 91177308-0d34-0410-b5e6-96231b3b80d8
From a user prospective, it forces the use of an annoying nullptr to mark the end of the vararg, and there's not type checking on the arguments.
The variadic template is an obvious solution to both issues.
Differential Revision: https://reviews.llvm.org/D31070
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299949 91177308-0d34-0410-b5e6-96231b3b80d8
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299925 91177308-0d34-0410-b5e6-96231b3b80d8
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D31070
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299699 91177308-0d34-0410-b5e6-96231b3b80d8
This prevents crashes when attempting to instrument functions containing
C++ try.
Sanitizer coverage will still fail at runtime when an exception is
thrown through a sancov instrumented function, but that seems marginally
better than what we have now. The full solution is to color the blocks
in LLVM IR and only instrument blocks that have an unambiguous color,
using the appropriate token.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298662 91177308-0d34-0410-b5e6-96231b3b80d8
On Windows, the symbols "___stop___sancov_guards" and "___start___sancov_guards"
are not defined automatically. So, we need to take a different approach.
We define 3 sections:
Section ".SCOV$A" will only hold a variable ___start___sancov_guard.
Section ".SCOV$M" will hold the main data.
Section ".SCOV$Z" will only hold a variable ___stop___sancov_guards.
When linking, they will be merged sorted by the characters after the $, so we
can use the pointers of the variables ___[start|stop]___sancov_guard to know the
actual range of addresses of that section.
In this diff, I updated instrumentation to include all the guard arrays in
section ".SCOV$M".
Differential Revision: https://reviews.llvm.org/D28434
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293987 91177308-0d34-0410-b5e6-96231b3b80d8
MachO's sections need a segment as well as a section name, and the
section start and end symbols are spelled differently than on ELF.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293733 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265602 91177308-0d34-0410-b5e6-96231b3b80d8