This patch adds an XCOFF triple object format type into LLVM.
This XCOFF triple object file type will be used later by object file and assembly generation for the AIX platform.
Differential Revision: https://reviews.llvm.org/D58930
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@355989 91177308-0d34-0410-b5e6-96231b3b80d8
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@351636 91177308-0d34-0410-b5e6-96231b3b80d8
Debian uses different triples for MIPS r6 and paths. Here we use SubArch
to determine whether it is r6, if we found `r6' in CPU section of triple.
These new triples include:
mipsisa32r6-linux-gnu
mipsisa32r6el-linux-gnu
mipsisa64r6-linux-gnuabi64
mipsisa64r6el-linux-gnuabi64
mipsisa64r6-linux-gnuabin32
mipsisa64r6el-linux-gnuabin32
Patch by YunQiang Su.
Differential revision: https://reviews.llvm.org/D50857
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@343185 91177308-0d34-0410-b5e6-96231b3b80d8
Add support mips64(el)-linux-gnuabin32 triples, and set them to N32.
Debian architecture name mipsn32/mipsn32el are also added. Set
UseIntegratedAssembler for N32 if we can detect it.
Patch by YunQiang Su.
Differential revision: https://reviews.llvm.org/D51408
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@342416 91177308-0d34-0410-b5e6-96231b3b80d8
HermitCore is a POSIX-compatible kernel for running a single application in an isolated environment to get maximum performance and predictable runtime behavior. It can either be used bare-metal on hardware or a VM (Unikernel) or side by side to an existing Linux system (Multikernel).
Due to the latter feature, HermitCore binaries are marked with ELFOSABI_STANDALONE to let the Linux ELF loader distinguish them from regular Unix/Linux binaries and load them using the HermitCore "proxy" tool.
Patch by Colin Finck!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@340675 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM triple normalization is handling "unknown" and empty components
differently; for example given "x86_64-unknown-linux-gnu" and
"x86_64-linux-gnu" which should be equivalent, triple normalization
returns "x86_64-unknown-linux-gnu" and "x86_64--linux-gnu". autoconf's
config.sub returns "x86_64-unknown-linux-gnu" for both
"x86_64-linux-gnu" and "x86_64-unknown-linux-gnu". This changes the
triple normalization to behave the same way, replacing empty triple
components with "unknown".
This addresses PR37129.
Differential Revision: https://reviews.llvm.org/D50219
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@339294 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: The lib paths are not correctly picked up for OpenEmbedded sysroots
(like arm-oe-linux-gnueabi). I fix this in a follow-up clang patch. But in
order to add the correct libs I need to detect if the vendor is oe. For this
reason, it is first necessary to teach llvm to detect oe vendor, which is what
this patch does.
Reviewers: chandlerc, compnerd, rengolin, javed.absar
Reviewed By: compnerd
Subscribers: kristof.beyls, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D48861
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336401 91177308-0d34-0410-b5e6-96231b3b80d8
- Remove use of the opencl and amdopencl environment member of the target triple for the AMDGPU target.
- Use function attribute to communicate to the AMDGPU backend to add implicit arguments for OpenCL kernels for the AMDHSA OS.
Differential Revision: https://reviews.llvm.org/D43736
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@328349 91177308-0d34-0410-b5e6-96231b3b80d8
Until this patch, only `powerpc` and `ppc32` were recognized as valid
PowerPC 32-bit architectures in a target triple. This was incompatible
with the triple `ppc-apple-darwin` as returned for libObject. I found
out about this when working on a test case using a binary generated on
an old PowerBook G4.
We had the choice of either fix this in the Mach-O object parser or
in the Triple implementation. I chose the latter because it feels like
the most canonical place.
Differential revision: https://reviews.llvm.org/D43760
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@326182 91177308-0d34-0410-b5e6-96231b3b80d8
Apple's iOS, tvOS and watchOS simulator platforms have never been clearly
distinguished in the target triples. Even though they are intended to
behave similarly to the corresponding device platforms, they have separate
SDKs and are really separate platforms from the compiler's perspective.
Clang now defines a macro when building for one of these simulator platforms
(r297866) but that relies on the very indirect mechanism of checking to see
which option was used to specify the minimum deployment target. That is not
so great. Swift would also like to distinguish these simulator platforms in
a similar way, but unlike Clang, Swift does not use a separate option to
specify the minimum deployment target -- it uses a -target option to
specify the target triple directly, including the OS version number.
Using a different target triple for the simulator platforms is a much
more direct and obvious way to specify this. Putting the "simulator" in
the environment component of the triple means the OS values can stay the
same and existing code the looks at the OS field will not be affected.
https://reviews.llvm.org/D39143
rdar://problem/34729432
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316380 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This operating system type represents the AMDGPU PAL runtime, and will
be required by the AMDGPU backend in order to generate correct code for
this runtime.
Currently it generates the same code as not specifying an OS at all.
That will change in future commits.
Patch from Tim Corringham.
Subscribers: arsenm, nhaehnle
Differential Revision: https://reviews.llvm.org/D37380
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@314500 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the OS check for the Haiku operating system, as it was
missing in the Triple class. Tests for x86_64-unknown-haiku and
i586-pc-haiku were also added.
These patches only affect Haiku and are completely harmless for
other platforms.
Patch by Calvin Hill <calvin@hakobaito.co.uk>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311153 91177308-0d34-0410-b5e6-96231b3b80d8
clang-format (https://reviews.llvm.org/D33932) to keep primary headers
at the top and handle new utility headers like 'gmock' consistently with
other utility headers.
No other change was made. I did no manual edits, all of this is
clang-format.
This should allow other changes to have more clear and focused diffs,
and is especially motivated by moving some headers into more focused
libraries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304786 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: SUSE's ARM triples end with -gnueabi even though they are hard-float. This requires special handling of SUSE ARM triples. Hence we need a way to differentiate the SUSE as vendor. This CL adds that.
Reviewers: chandlerc, compnerd, echristo, rengolin
Reviewed By: rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32426
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301174 91177308-0d34-0410-b5e6-96231b3b80d8
Triple::objectFormat defaults to an Elf format.
Changing objectFormat to Elf doesn't make any difference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294104 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
For AMDGPU, we have been using the operating system component of the triple
for specifying the low-level runtime that is being used. The rationale for
this is that the host operating system (e.g. Linux) is irrelevant for GPU code,
since its execution enviroment will be mostly controled by the low-level runtime
being used to execute the code.
In most cases, higher level languages have their own runtime which is
implemented on top of the low-level runtime. The kernel ABIs of each
language mostly depend on the low-level runtime, but there may be some
slight differences between languages. OpenCL for example, may append
additional arguments to the kernel in order to pass values like global
offsets or buffers for printf. OpenMP, HCC, or other languages may want
to add their own values which differ from OpenCL.
The reason for adding a new opencl environment type is to make it possible for the backend
to distinguish between the ABIs of the higher-level languages and handle them correctly.
It seems cleaner to use the enviroment component for this rather than creating a new
OS type for every combination of low-level runtime / high-level language.
Reviewers: Anastasia, chandlerc
Subscribers: whchung, pekka.jaaskelainen, wdng, yaxunl, llvm-commits
Differential Revision: https://reviews.llvm.org/D24735
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282218 91177308-0d34-0410-b5e6-96231b3b80d8
Now the tests of TargetParser is in place:
unittests/Support/TargetParserTest.cpp.
So the tests in TripleTest.cpp which actually stressing TargetParser's behavior could be removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278899 91177308-0d34-0410-b5e6-96231b3b80d8
The current approach isn't a long-term viable pattern. Given the set of
architectures A, vendors V, operating systems O, and environments E, it
does |A| * |V| * |O| * |E| * 4! tests. As LLVM grows, this test keeps
getting slower, despite my working very hard to make it get some
"optimizations" even in -O0 builds in order to lower the constant
factors. Fundamentally, we're doing an unreasonable amount of work.i
Looking at the specific thing being tested -- the goal seems very
clearly to be testing the *permutations*, not the *combinations*. The
combinations are driving up the complexity much more than anything else.
Instead, test every possible value for a given triple entry in every
permutation of *some* triple. This really seems to cover the core goal
of the test. Every single possible triple component is tested in every
position. But because we keep the rest of the triple constant, it does
so in a dramatically more scalable amount of time. With this model we do
(|A| + |V| + |O| + |E|) * 4! tests.
For me on a debug build, this goes from running for 19 seconds to 19
milliseconds, or a 1000x improvement. This makes a world of difference
for the critical path of 'ninja check-llvm' and other extremely common
workflows.
Thanks to Renato, Dean, and David for the helpful review comments and
helping me refine the explanation of the change.
Differential Revision: https://reviews.llvm.org/D23156
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277912 91177308-0d34-0410-b5e6-96231b3b80d8
As support expands to more runtimes, we'll need to
distinguish between more than just HSA and unknown.
This also lets us stop using unknown everywhere.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@260790 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This follows D14577 to treat ARMv6-J as an alias for ARMv6,
instead of an architecture in its own right.
The functional change is that the default CPU when targeting ARMv6-J
changes from arm1136j-s to arm1136jf-s, which is currently used as
the default CPU for ARMv6; both are, in fact, ARMv6-J CPUs.
The J-bit (Jazelle support) is irrelevant to LLVM, and it doesn't
affect code generation, attributes, optimizations, or anything else,
apart from selecting the default CPU.
Reviewers: rengolin, logan, compnerd
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14755
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253675 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
* ARMv6KZ is the "canonical" name, given in the ARMARM
* ARMv6Z is an "official abbreviation" for it, mentioned in the ARMARM
* ARMv6ZK is a popular misspelling, which we should support as an alias.
The patch corrects the handling of the names.
Functional changes:
* ARMv6Z no longer treated as an architecture in its own right
* ARMv6ZK renamed to ARMv6KZ, accepting ARMv6ZK as an alias
* arm1176jz-s and arm1176jzf-s recognized as ARMv6ZK, instead of ARMv6K
* default ARMv6K CPU changed to arm1176j-s
Reviewers: rengolin, logan, compnerd
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14568
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253206 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds the underlying infrastructure for an AVR backend to be included into LLVM. It is the first of a series of patches aimed at moving the out-of-tree AVR backend into the tree.
It consists of adding a new`Triple` target 'avr'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@250492 91177308-0d34-0410-b5e6-96231b3b80d8