This reapplies commit r337489 reverted by r337541
Additionally, this commit contains a speculative fix to the issue reported in r337541
(the report does not contain an actionable reproducer, just a stack trace)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337606 91177308-0d34-0410-b5e6-96231b3b80d8
This is mostly a preparation work for adding a limited support for
select instructions. It proved to be difficult to do due to size and
irregularity of Vectorizer::isConsecutiveAccess, this is fixed here I
believe.
It also turned out that these changes make it simpler to finish one of
the TODOs and fix a number of other small issues, namely:
1. Looking through bitcasts to a type of a different size (requires
careful tracking of the original load/store size and some math
converting sizes in bytes to expected differences in indices of GEPs).
2. Reusing partial analysis of pointers done by first attempt in proving
them consecutive instead of starting from scratch. This added limited
support for nested GEPs co-existing with difficult sext/zext
instructions. This also required a careful handling of negative
differences between constant parts of offsets.
3. Handing a case where the first pointer index is not an add, but
something else (a function parameter for instance).
I observe an increased number of successful vectorizations on a large
set of shader programs. Only few shaders are affected, but those that
are affected sport >5% less loads and stores than before the patch.
Reviewed By: rampitec
Differential-Revision: https://reviews.llvm.org/D49342
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337489 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Currently, isConsecutiveAccess() detects two pointers(PtrA and PtrB) as consecutive by
comparing PtrB with BaseDelta+PtrA. This works when both pointers are factorized or
both of them are not factorized. But isConsecutiveAccess() fails if one of the
pointers is factorized but the other one is not.
Here is an example:
PtrA = 4 * (A + B)
PtrB = 4 + 4A + 4B
This patch uses getMinusSCEV() to compute the distance between two pointers.
getMinusSCEV() allows combining the expressions and computing the simplified distance.
Author: FarhanaAleen
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D49516
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337471 91177308-0d34-0410-b5e6-96231b3b80d8
Pulled out from D49225, we have a lot of repeated scalar cost calculations, often with arguments that don't look the same but turn out to be.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337390 91177308-0d34-0410-b5e6-96231b3b80d8
TTI::getMinMaxReductionCost typically can't handle pointer types - until this is changed its better to limit horizontal reduction to integer/float vector types only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337280 91177308-0d34-0410-b5e6-96231b3b80d8
We currently only support binary instructions in the alternate opcode shuffles.
This patch is an initial attempt at adding cast instructions as well, this raises several issues that we probably want to address as we continue to generalize the alternate mechanism:
1 - Duplication of cost determination - we should probably add scalar/vector costs helper functions and get BoUpSLP::getEntryCost to use them instead of determining costs directly.
2 - Support alternate instructions with the same opcode (e.g. casts with different src types) - alternate vectorization of calls with different IntrinsicIDs will require this.
3 - Allow alternates to be a different instruction type - mixing binary/cast/call etc.
4 - Allow passthrough of unsupported alternate instructions - related to PR30787/D28907 'copyable' elements.
Reapplied with fix to only accept 2 different casts if they come from the same source type (PR38154).
Differential Revision: https://reviews.llvm.org/D49135
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336989 91177308-0d34-0410-b5e6-96231b3b80d8
We currently only support binary instructions in the alternate opcode shuffles.
This patch is an initial attempt at adding cast instructions as well, this raises several issues that we probably want to address as we continue to generalize the alternate mechanism:
1 - Duplication of cost determination - we should probably add scalar/vector costs helper functions and get BoUpSLP::getEntryCost to use them instead of determining costs directly.
2 - Support alternate instructions with the same opcode (e.g. casts with different src types) - alternate vectorization of calls with different IntrinsicIDs will require this.
3 - Allow alternates to be a different instruction type - mixing binary/cast/call etc.
4 - Allow passthrough of unsupported alternate instructions - related to PR30787/D28907 'copyable' elements.
Reapplied with fix to only accept 2 different casts if they come from the same source type.
Differential Revision: https://reviews.llvm.org/D49135
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336812 91177308-0d34-0410-b5e6-96231b3b80d8
We currently only support binary instructions in the alternate opcode shuffles.
This patch is an initial attempt at adding cast instructions as well, this raises several issues that we probably want to address as we continue to generalize the alternate mechanism:
1 - Duplication of cost determination - we should probably add scalar/vector costs helper functions and get BoUpSLP::getEntryCost to use them instead of determining costs directly.
2 - Support alternate instructions with the same opcode (e.g. casts with different src types) - alternate vectorization of calls with different IntrinsicIDs will require this.
3 - Allow alternates to be a different instruction type - mixing binary/cast/call etc.
4 - Allow passthrough of unsupported alternate instructions - related to PR30787/D28907 'copyable' elements.
Differential Revision: https://reviews.llvm.org/D49135
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336804 91177308-0d34-0410-b5e6-96231b3b80d8
This patch introduces a VPValue in VPBlockBase to represent the condition
bit that is used as successor selector when a block has multiple successors.
This information wasn't necessary until now, when we are about to introduce
outer loop vectorization support in VPlan code gen.
Reviewers: fhahn, rengolin, mkuper, hfinkel, mssimpso
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48814
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336554 91177308-0d34-0410-b5e6-96231b3b80d8
This is an early step towards matching Instructions by attributes other than the opcode. This will be necessary for cast/call alternates which share the same opcode but have different types/intrinsicIDs etc. - which we could vectorize as long as we split them using the alternate mechanism.
Differential Revision: https://reviews.llvm.org/D48945
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336344 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: It is common to have the following min/max pattern during the intermediate stages of SLP since we only optimize at the end. This patch tries to catch such patterns and allow more vectorization.
%1 = extractelement <2 x i32> %a, i32 0
%2 = extractelement <2 x i32> %a, i32 1
%cond = icmp sgt i32 %1, %2
%3 = extractelement <2 x i32> %a, i32 0
%4 = extractelement <2 x i32> %a, i32 1
%select = select i1 %cond, i32 %3, i32 %4
Author: FarhanaAleen
Reviewed By: ABataev, RKSimon, spatel
Differential Revision: https://reviews.llvm.org/D47608
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336130 91177308-0d34-0410-b5e6-96231b3b80d8
This code is only used by alternate opcodes so the InstructionsState has already confirmed that every Value is an Instruction, plus we use cast<Instruction> which will assert on failure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336102 91177308-0d34-0410-b5e6-96231b3b80d8
We were always using the opcodes of the first 2 scalars for the costs of the alternate opcode + shuffle. This made sense when we used SK_Alternate and opcodes were guaranteed to be alternating, but this fails for the more general SK_Select case.
This fix exposes an issue demonstrated by the fmul_fdiv_v4f32_const test - the SLM model has v4f32 fdiv costs which are more than twice those of the f32 scalar cost, meaning that the cost model determines that the vectorization is not performant. Unfortunately it completely ignores the fact that the fdiv by a constant will be changed into a fmul by InstCombine for a much lower cost vectorization. But at least we're seeing this now...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336095 91177308-0d34-0410-b5e6-96231b3b80d8
Add assertions - we're already assuming this in how we use the AltOpcode and treat everything as BinaryOperators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336092 91177308-0d34-0410-b5e6-96231b3b80d8
Since D46637 we are better at handling uniform/non-uniform constant Pow2 detection; this patch tweaks the SLP argument handling to support them.
As SLP works with arrays of values I don't think we can easily use the pattern match helpers here.
Differential Revision: https://reviews.llvm.org/D48214
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335621 91177308-0d34-0410-b5e6-96231b3b80d8
Enable tryToVectorizeList to support InstructionsState alternate opcode patterns at a root (build vector etc.) as well as further down the vectorization tree.
NOTE: This patch reduces some of the debug reporting if there are opcode mismatches - I can try to add it back if it proves a problem. But it could get rather messy trying to provide equivalent verbose debug strings via getSameOpcode etc.
Differential Revision: https://reviews.llvm.org/D48488
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335364 91177308-0d34-0410-b5e6-96231b3b80d8
All calls were extracting the InstructionsState Opcode/AltOpcode values so we might as well pass it directly
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335359 91177308-0d34-0410-b5e6-96231b3b80d8
SLP currently only accepts (F)Add/(F)Sub alternate counterpart ops to be merged into an alternate shuffle.
This patch relaxes this to accept any pair of BinaryOperator opcodes instead, assuming the target's cost model accepts the vectorization+shuffle.
Differential Revision: https://reviews.llvm.org/D48477
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335349 91177308-0d34-0410-b5e6-96231b3b80d8
As described in D48359, this patch pushes InstructionsState down the BoUpSLP call hierarchy instead of the corresponding raw OpValue. This makes it easier to track the alternate opcode etc. and avoids us having to call getAltOpcode which makes it difficult to support more than one alternate opcode.
Differential Revision: https://reviews.llvm.org/D48382
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335170 91177308-0d34-0410-b5e6-96231b3b80d8
This is part of a move towards generalizing the alternate opcode mechanism and not just supporting (F)Add/(F)Sub counterparts.
The patch embeds the AltOpcode in the InstructionsState instead of calling getAltOpcode so often.
I'm hoping to eventually remove all uses of getAltOpcode and handle alternate opcode selection entirely within getSameOpcode, that will require us to use InstructionsState throughout the BoUpSLP call hierarchy (similar to some of the changes in D28907), which I will begin in future patches.
Differential Revision: https://reviews.llvm.org/D48359
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335134 91177308-0d34-0410-b5e6-96231b3b80d8
D47985 saw the old SK_Alternate 'alternating' shuffle mask replaced with the SK_Select mask which accepts either input operand for each lane, equivalent to a vector select with a constant condition operand.
This patch updates SLPVectorizer to make full use of this SK_Select shuffle pattern by removing the 'isOdd()' limitation.
The AArch64 regression will be fixed by D48172.
Differential Revision: https://reviews.llvm.org/D48174
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335130 91177308-0d34-0410-b5e6-96231b3b80d8
The getArithmeticInstrCost calls for shuffle vectors entry costs specify TargetTransformInfo::OperandValueKind arguments, but are just using the method's default values. This seems to be a copy + paste issue and doesn't affect the costs in anyway. The TargetTransformInfo::OperandValueProperties default arguments are already not being used.
Noticed while working on D47985.
Differential Revision: https://reviews.llvm.org/D48008
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335045 91177308-0d34-0410-b5e6-96231b3b80d8
This patch introduces a VPInstructionToVPRecipe transformation, which
allows us to generate code for a VPInstruction based VPlan re-using the
existing infrastructure.
Reviewers: dcaballe, hsaito, mssimpso, hfinkel, rengolin, mkuper, javed.absar, sguggill
Reviewed By: dcaballe
Differential Revision: https://reviews.llvm.org/D46827
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@334969 91177308-0d34-0410-b5e6-96231b3b80d8
Ensure we keep track of the input vectors in all cases instead of just for SK_Select.
Ideally we'd reuse the shuffle mask pattern matching in TargetTransformInfo::getInstructionThroughput here to easily add support for all TargetTransformInfo::ShuffleKind without mass code duplication, I've added a TODO for now but D48236 should help us here.
Differential Revision: https://reviews.llvm.org/D48023
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@334958 91177308-0d34-0410-b5e6-96231b3b80d8
This is a minor fix for LV cost model, where the cost for VF=2 was
computed twice when the vectorization of the loop was forced without
specifying a VF.
Reviewers: xusx595, hsaito, fhahn, mkuper
Reviewed By: hsaito, xusx595
Differential Revision: https://reviews.llvm.org/D48048
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@334840 91177308-0d34-0410-b5e6-96231b3b80d8
This is part of the work to cleanup use of 'alternate' ops so we can use the more general SK_Select shuffle type.
Only getSameOpcode calls getMainOpcode and much of the logic is repeated in both functions. This will require some reworking of D28907 but that patch has hit trouble and is unlikely to be completed anytime soon.
Differential Revision: https://reviews.llvm.org/D48120
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@334701 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed on PR33744, this patch relaxes ShuffleKind::SK_Alternate which requires shuffle masks to only match an alternating pattern from its 2 sources:
e.g. v4f32: <0,5,2,7> or <4,1,6,3>
This seems far too restrictive as most SIMD hardware which will implement it using a general blend/bit-select instruction, so replaces it with SK_Select, permitting elements from either source as long as they are inline:
e.g. v4f32: <0,5,2,7>, <4,1,6,3>, <0,1,6,7>, <4,1,2,3> etc.
This initial patch just updates the name and cost model shuffle mask analysis, later patch reviews will update SLP to better utilise this - it still limits itself to SK_Alternate style patterns.
Differential Revision: https://reviews.llvm.org/D47985
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@334513 91177308-0d34-0410-b5e6-96231b3b80d8
Currently SmallSet<PointerTy> inherits from SmallPtrSet<PointerTy>. This
patch replaces such types with SmallPtrSet, because IMO it is slightly
clearer and allows us to get rid of unnecessarily including SmallSet.h
Reviewers: dblaikie, craig.topper
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D47836
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@334492 91177308-0d34-0410-b5e6-96231b3b80d8
SmallSet forwards to SmallPtrSet for pointer types. SmallPtrSet supports iteration, but a normal SmallSet doesn't. So if it wasn't for the forwarding, this wouldn't work.
These places were found by hiding the begin/end methods in the SmallSet forwarding
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@334343 91177308-0d34-0410-b5e6-96231b3b80d8
This patch moves the recipe-creation functions out of
LoopVectorizationPlanner, which should do the high-level
orchestration of the transformations.
Reviewers: dcaballe, rengolin, hsaito, Ayal
Reviewed By: dcaballe
Differential Revision: https://reviews.llvm.org/D47595
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@334305 91177308-0d34-0410-b5e6-96231b3b80d8
This first step separates VPInstruction-based and VPRecipe-based
VPlan creation, which should make it easier to migrate to VPInstruction
based code-gen step by step.
Reviewers: Ayal, rengolin, dcaballe, hsaito, mkuper, mzolotukhin
Reviewed By: dcaballe
Subscribers: bollu, tschuett, rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D47477
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@334284 91177308-0d34-0410-b5e6-96231b3b80d8