We currently always vectorize induction variables. However, if an induction
variable is only used for counting loop iterations or computing addresses with
getelementptr instructions, we don't need to do this. Vectorizing these trivial
induction variables can create vector code that is difficult to simplify later
on. This is especially true when the unroll factor is greater than one, and we
create vector arithmetic when computing step vectors. With this patch, we check
if an induction variable is only used for counting iterations or computing
addresses, and if so, scalarize the arithmetic when computing step vectors
instead. This allows for greater simplification.
This patch addresses the suboptimal pointer arithmetic sequence seen in
PR27881.
Reference: https://llvm.org/bugs/show_bug.cgi?id=27881
Differential Revision: http://reviews.llvm.org/D21620
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274627 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, whenever we needed a vector IV, we would create it on the fly,
by splatting the scalar IV and adding a step vector. Instead, we can create a
real vector IV. This tends to save a couple of instructions per iteration.
This only changes the behavior for the most basic case - integer primary
IVs with a constant step.
Differential Revision: http://reviews.llvm.org/D20315
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271410 91177308-0d34-0410-b5e6-96231b3b80d8
Vectorization of memory instruction (Load/Store) is possible when the pointer is coming from GEP. The GEP analysis allows to estimate the profit.
In some cases we have a "bitcast" between GEP and memory instruction.
I added code that skips the "bitcast".
http://reviews.llvm.org/D13886
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251291 91177308-0d34-0410-b5e6-96231b3b80d8