updated instructions:
pmulld, pmullw, pmulhw, mulsd, mulps, mulpd, divss, divps, divsd, divpd, addpd and subpd.
special optimization case which replaces pmulld with pmullw\pmulhw\pshuf seq.
In case if the real operands bitwidth <= 16.
Differential Revision: https://reviews.llvm.org/D28104
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291657 91177308-0d34-0410-b5e6-96231b3b80d8
The 'fast' costs should only work for shifts by uniform constants (uniform non-constant are lowered using the slow default implementation).
Logical shifts were not taking into account that we must mask the psrlw result, so the costs needed to be doubled.
Added missing AVX2/AVX512BW costs as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291391 91177308-0d34-0410-b5e6-96231b3b80d8
SSE41 provides pmulld which allows the simpler pslld/paddd/cvttps2dq/pmulld pattern than SSE2's use of pmuludq.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291372 91177308-0d34-0410-b5e6-96231b3b80d8
This code seems to be target dependent which may not be the same for all targets.
Passed the decision whether the given stride is complex or not to the target by sending stride information via SCEV to getAddressComputationCost instead of 'IsComplex'.
Specifically at X86 targets we dont see any significant address computation cost in case of the strided access in general.
Differential Revision: https://reviews.llvm.org/D27518
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291106 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed on D27811, merged the shuffle cost LUTs and use the shuffle kind to perform the lookup instead of the ISD opcode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290956 91177308-0d34-0410-b5e6-96231b3b80d8
X86 target does not provide any target specific cost calculation for interleave patterns.It uses the common target-independent calculation, which gives very high numbers. As a result, the scalar version is chosen in many cases. The situation on AVX-512 is even worse, since we have 3-src shuffles that significantly reduce the cost.
In this patch I calculate the cost on AVX-512. It will allow to compare interleave pattern with gather/scatter and choose a better solution (PR31426).
* Shiffle-broadcast cost will be changed in Simon's upcoming patch.
Differential Revision: https://reviews.llvm.org/D28118
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290810 91177308-0d34-0410-b5e6-96231b3b80d8
Use 512-bit instructions with subvector insertion/extraction like we do in a number of similar circumstances
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287882 91177308-0d34-0410-b5e6-96231b3b80d8
Use 512-bit instructions with subvector insertion/extraction like we do in a number of similar circumstances
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287762 91177308-0d34-0410-b5e6-96231b3b80d8
More realistic v16i8/v32i8/v64i8 MUL costs - we have to extend to vXi16, use PMULLW and then truncate the result
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286838 91177308-0d34-0410-b5e6-96231b3b80d8
Add explicit v16i16/v32i8 ADD/SUB costs, matching the costs of v4i64/v8i32 - they were missing for some reason.
This has side effects on the LV max bandwidth tests (AVX1 now prefers 128-bit vectors vs AVX2 which still prefers 256-bit)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286832 91177308-0d34-0410-b5e6-96231b3b80d8
This patch avoids scalarization of CTLZ by instead expanding to use CTPOP (ref: "Hacker's Delight") when the necessary operations are available.
This also adds the necessary cost models for X86 SSE2 targets (the main beneficiary) to ensure vectorization only happens when its useful.
Differential Revision: https://reviews.llvm.org/D25910
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286233 91177308-0d34-0410-b5e6-96231b3b80d8
There is a bug describing poor cost model for floating point operations:
Bug 29083 - [X86][SSE] Improve costs for floating point operations. This
patch is the second one in series of patches dealing with cost model.
Differential Revision: https://reviews.llvm.org/D25722
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285564 91177308-0d34-0410-b5e6-96231b3b80d8
We were defaulting to SSE2 costs which weren't taking into account the availability of PBLENDW/PBLENDVB to improve merging of per-element shift results.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284939 91177308-0d34-0410-b5e6-96231b3b80d8
We weren't accounting for legal types on every subtarget, meaning that many of the costs were using defaults.
We still don't correctly cost (or test) the 512-bit sdiv/udiv by uniform const cases, nor the power-of-2 cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284744 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed on PR28461 we currently miss the chance to lower "fptosi <2 x double> %arg to <2 x i32>" to cvttpd2dq due to its use of illegal types.
This patch adds support for fptosi to 2i32 from both 2f64 and 2f32.
It also recognises that cvttpd2dq zeroes the upper 64-bits of the xmm result (similar to D23797) - we still don't do this for the cvttpd2dq/cvttps2dq intrinsics - this can be done in a future patch.
Differential Revision: https://reviews.llvm.org/D23808
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284459 91177308-0d34-0410-b5e6-96231b3b80d8
The current Cost Model implementation is very inaccurate and has to be
updated, improved, re-implemented to be able to take into account the
concrete CPU models and the concrete targets where this Cost Model is
being used. For example, the Latency Cost Model should be differ from
Code Size Cost Model, etc.
This patch is the first step to launch the developing and implementation
of a new Cost Model generation.
Differential Revision: https://reviews.llvm.org/D25186
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284012 91177308-0d34-0410-b5e6-96231b3b80d8
This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278902 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r278048. Something changed between the last time I
built this--it takes awhile on my ridiculously slow and ancient
computer--and now that broke this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278053 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Based on two patches by Michael Mueller.
This is a target attribute that causes a function marked with it to be
emitted as "hotpatchable". This particular mechanism was originally
devised by Microsoft for patching their binaries (which they are
constantly updating to stay ahead of crackers, script kiddies, and other
ne'er-do-wells on the Internet), but is now commonly abused by Windows
programs to hook API functions.
This mechanism is target-specific. For x86, a two-byte no-op instruction
is emitted at the function's entry point; the entry point must be
immediately preceded by 64 (32-bit) or 128 (64-bit) bytes of padding.
This padding is where the patch code is written. The two byte no-op is
then overwritten with a short jump into this code. The no-op is usually
a `movl %edi, %edi` instruction; this is used as a magic value
indicating that this is a hotpatchable function.
Reviewers: majnemer, sanjoy, rnk
Subscribers: dberris, llvm-commits
Differential Revision: https://reviews.llvm.org/D19908
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278048 91177308-0d34-0410-b5e6-96231b3b80d8