The PrefBoth constraint is used for blocks that ideally want a live-in
value both on the stack and in a register. This would be used by a block
that has a use before interference forces a spill.
Secondly, add the ChangesValue flag to BlockConstraint. This tells
SpillPlacement if a live-in value on the stack can be reused as a
live-out stack value for free. If the block redefines the virtual
register, a spill would be required for that.
This extra information will be used by SpillPlacement to more accurately
calculate spill costs when a value can exist both on the stack and in a
register.
The simplest example is a basic block that reads the virtual register,
but doesn't change its value. Spilling around such a block requires a
reload, but no spill in the block.
The spiller already knows this, but the spill placer doesn't. That can
sometimes lead to suboptimal regions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136731 91177308-0d34-0410-b5e6-96231b3b80d8
The testcase looks extremely fragile, so I'm adding an assertion which should catch any cases like this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136711 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the 'resume' instruction class, IR parsing, and bitcode reading and
writing. The 'resume' instruction resumes propagation of an existing (in-flight)
exception whose unwinding was interrupted with a 'landingpad' instruction (to be
added later).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136589 91177308-0d34-0410-b5e6-96231b3b80d8
This includes registers like EFLAGS and ST0-ST7. We don't check for
liveness issues in the verifier and scavenger because registers will
never be allocated from these classes.
While in SSA form, we do care about the liveness of unallocatable
unreserved registers. Liveness of EFLAGS and ST0 neds to be correct for
MachineDCE and MachineSinking.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136541 91177308-0d34-0410-b5e6-96231b3b80d8
This flag is true from isel to register allocation when the machine
function is required to be in SSA form. The TwoAddressInstructionPass
and PHIElimination passes clear the flag.
The SSA flag wil be used by the machine code verifier to check for SSA
form, and eventually an assertion can enforce it in +Asserts builds.
This will catch the common target error of creating machine code with
multiple defs of a virtual register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136532 91177308-0d34-0410-b5e6-96231b3b80d8
working on x86 (at least for trivial testcases); other architectures will
need more work so that they actually emit the appropriate instructions for
orderings stricter than 'monotonic'. (As far as I can tell, the ARM, PPC,
Mips, and Alpha backends need such changes.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136457 91177308-0d34-0410-b5e6-96231b3b80d8
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136433 91177308-0d34-0410-b5e6-96231b3b80d8
This generates the correct SDNodes for the landingpad instruction. It makes an
assumption that the result of the landingpad instruction has at least two
values. And that the first value is a pointer to the exception object and the
second value is the "selector."
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136430 91177308-0d34-0410-b5e6-96231b3b80d8
AddLandingPadInfo takes a landingpad instruction and grabs all of the
information from it that it needs for EH table generation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136429 91177308-0d34-0410-b5e6-96231b3b80d8
'atomicrmw' instructions, which allow representing all the current atomic
rmw intrinsics.
The allowed operands for these instructions are heavily restricted at the
moment; we can probably loosen it a bit, but supporting general
first-class types (where it makes sense) might get a bit complicated,
given how SelectionDAG works.
As an initial cut, these operations do not support specifying an alignment,
but it would be possible to add if we think it's useful. Specifying an
alignment lower than the natural alignment would be essentially
impossible to support on anything other than x86, but specifying a greater
alignment would be possible. I can't think of any useful optimizations which
would use that information, but maybe someone else has ideas.
Optimizer/codegen support coming soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136404 91177308-0d34-0410-b5e6-96231b3b80d8
Code like that would only be produced by bugpoint, but we should still
handle it correctly.
When a register is defined by a REG_SEQUENCE of undefs, the register
itself is undef. Previously, we would create a register with uses but no
defs.
Fixes part of PR10520.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136401 91177308-0d34-0410-b5e6-96231b3b80d8
There are two conflicting strategies in play:
- Under high register pressure, we want to assign large live ranges
first. Smaller live ranges are easier to place afterwards.
- Live range splitting is guided by interference, so splitting should be
deferred until interference is as realistic as possible.
With the recent changes to the live range stages, and with compact
regions enabled, it is less traumatic to split a live range too early.
If some of the split products were too big, they can often be split
again.
By reversing the RS_Split order, we get this queue order:
1. Normal live ranges, large to small.
2. RS_Split live ranges, large to small.
The large-to-small order improves RAGreedy's puzzle solving skills under
high register pressure. It may cause a bit more iterated splitting, but
we handle that better now.
With this change, -compact-regions is mostly an improvement on SPEC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136388 91177308-0d34-0410-b5e6-96231b3b80d8
When splitting global live ranges, it is now possible to split for
multiple destination intervals at once. Previously, we only had the main
and stack intervals.
Each edge bundle is assigned to a split candidate, and splitAroundRegion
will insert copies between the candidate intervals and the stack
interval as needed.
The multi-way splitting is used to split around compact regions when
enabled with -compact-regions. The best candidate register still gets
all the bundles it wants, but everything outside the main interval is
first split around compact regions before we create single-block
intervals.
Compact region splitting still causes some regressions, so it is not
enabled by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136186 91177308-0d34-0410-b5e6-96231b3b80d8
These copies would coalesce easily, but the resulting value would be
defined by a deleted instruction. Now we also remove the undefined value
number from the destination register.
This fixes PR10503.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136174 91177308-0d34-0410-b5e6-96231b3b80d8
When dead code elimination deletes a PHI value, the virtual register may
split into multiple connected components. In that case, revert each
component to the RS_Assign stage.
The new components are guaranteed to be smaller (the original value
numbers are distributed among the components), so this will always be
making progress. The components are now allowed to evict other live
ranges or be split again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136034 91177308-0d34-0410-b5e6-96231b3b80d8
This is just a LangRef entry and reading/writing/memory representation; optimizer+codegen support coming soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136009 91177308-0d34-0410-b5e6-96231b3b80d8