2) live-outs.
Previously the post-RA schedulers completely ignore these dependencies since
returns, branches, etc. are all scheduling barriers. This patch model the
latencies between instructions being scheduled and the barriers. It also
handle calls by marking their register uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117193 91177308-0d34-0410-b5e6-96231b3b80d8
framework. It's purpose is not to improve register allocation per se,
but to make it easier to develop powerful live range splitting. I call
it the basic allocator because it is as simple as a global allocator
can be but provides the building blocks for sophisticated register
allocation with live range splitting.
A minimal implementation is provided that trivially spills whenever it
runs out of registers. I'm checking in now to get high-level design
and style feedback. I've only done minimal testing. The next step is
implementing a "greedy" allocation algorithm that does some register
reassignment and makes better splitting decisions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117174 91177308-0d34-0410-b5e6-96231b3b80d8
When a block has exactly two uses and the register is both live-in and live-out,
don't isolate the block. We would be inserting two copies, so we haven't really
made any progress.
If the live-in and live-out values separate into disconnected components after
splitting, we would be making progress. We can't detect that for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117169 91177308-0d34-0410-b5e6-96231b3b80d8
An exit block with a critical edge must only have predecessors in the loop, or
just before the loop. This guarantees that the inserted copies in the loop
predecessors dominate the exit block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117144 91177308-0d34-0410-b5e6-96231b3b80d8
It doesn't look like anything is wrong with the checkin,
but the new test cases expose a mem bug in AsmParser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117087 91177308-0d34-0410-b5e6-96231b3b80d8
weren't properly reflecting the OperandSize attribute
of the instruction leading to improper decoding of
certain instructions with the 66H prefix. Also added
a test case for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117084 91177308-0d34-0410-b5e6-96231b3b80d8
half of the Q register), rather than with just regno. This allows us to unify the encodings for
a lot of different NEON instrucitons that differ only in whether they have Q or D register operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117056 91177308-0d34-0410-b5e6-96231b3b80d8
mostly based on the ARM AsmParser at this time and is not particularly
functional.
Changed the MBlaze data layout from:
"E-p:32:32-i8:8:8-i16:16:16-i64:32:32-f64:32:32-v64:32:32-v128:32:32-n32"
to:
"E-p:32:32:32-i8:8:8-i16:16:16"
because the MicroBlaze doesn't have i64, f64, v64, or v128 data types.
Cleaned up the MBlaze source code:
1. The floating point register class has been removed. The
MicroBlaze does not have floating point registers. Floating
point values are simply stored in integer registers.
2. Renaming the CPURegs register class to GPR to reflect the
standard naming.
3. Removing a lot of stale code from AsmPrinter after
the conversion to InstPrinter.
4. Simplified sign extended loads by marking them as
expanded in ISelLowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117054 91177308-0d34-0410-b5e6-96231b3b80d8
the emitter to handle the addresses. Only simplify the offset if we need
to - also fix bug where in addrmode 5 we weren't dividing the offset by
4, which showed up due to not always lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117051 91177308-0d34-0410-b5e6-96231b3b80d8