Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for targets with mature MC support. Such targets will always parse the inline assembly (even when emitting assembly). Targets without mature MC support continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler to parse inline assembly (even when emitting assembly output). UseIntegratedAs is set to true for targets that consider any failure to parse valid assembly to be a bug. Target specific subclasses generally enable the integrated assembler in their constructor. The default value can be overridden with -no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example, those that use mnemonics such as 'foo' or 'hello world') have been updated to disable the integrated assembler.
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201237 91177308-0d34-0410-b5e6-96231b3b80d8
Generalize the AArch64 .td nodes for AssertZext and AssertSext. Use
them to match the relevant pextr store instructions.
The test widen_load-2.ll requires a slight change because with the
stores gone, the remaining instructions are scheduled in a different
order.
Add test cases for SSE4 and AVX variants.
Resolves rdar://13414672.
Patch by Adam Nemet <anemet@apple.com>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200957 91177308-0d34-0410-b5e6-96231b3b80d8
There was an extremely confusing proliferation of LLVM intrinsics to implement
the vacge & vacgt instructions. This combines them all into two polymorphic
intrinsics, shared across both backends.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200768 91177308-0d34-0410-b5e6-96231b3b80d8
Some of the SHA instructions take a scalar i32 as one argument (largely because
they work on 160-bit hash fragments). This wasn't reflected in the IR
previously, with ARM and AArch64 choosing different types (<4 x i32> and <1 x
i32> respectively) which was ugly.
This makes all the affected intrinsics take a uniform "i32", allowing them to
become non-polymorphic at the same time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200706 91177308-0d34-0410-b5e6-96231b3b80d8
When the scalar compare is between floating point and operands are
vector, we custom lower SELECT_CC to use NEON SIMD compare for
generating less instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200365 91177308-0d34-0410-b5e6-96231b3b80d8
This has a few advantages:
* Only targets that use a MCTargetStreamer have to worry about it.
* There is never a MCTargetStreamer without a MCStreamer, so we can use a
reference.
* A MCTargetStreamer can talk to the MCStreamer in its constructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200129 91177308-0d34-0410-b5e6-96231b3b80d8
The i8 type is not registered with any register class.
This causes a segmentation fault in MachineLICM::getRegisterClassIDAndCost.
The code selects the first type associated with register class FPR8,
which happens to be i8.
It uses this type (i8) to get the representative class pointer, which is 0.
It then uses this pointer to access a field, resulting in segmentation fault.
Since i8 type is not being used for printing any neon instruction
we can safely remove it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200046 91177308-0d34-0410-b5e6-96231b3b80d8
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8
It was commited as r199628 but reverted in r199628 as causing
regression test failed. It's because of old vervsion of patch
I used to commit. Sorry for mistake.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199704 91177308-0d34-0410-b5e6-96231b3b80d8
For FCMEQ, FCMGE, FCMGT, FCMLE and FCMLT, floating point zero will be
printed as #0.0 instead of #0. To support the history codes using #0,
we consider to let asm parser accept both #0.0 and #0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199621 91177308-0d34-0410-b5e6-96231b3b80d8
We should set them to expand for now since there are no patterns
dealing with them. Actually, there are no instructions either so I
doubt they'll ever be acceptable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199265 91177308-0d34-0410-b5e6-96231b3b80d8
promotion code, Tablegen will now select FPExt for floating point promotions
(previously it had returned AExt, which is not valid for floating point types).
Any out-of-tree targets that were relying on AExt being returned for FP
promotions will need to update their code check for FPExt instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199252 91177308-0d34-0410-b5e6-96231b3b80d8
APInt only knows how to compare values with the same BitWidth and asserts
in all other cases.
With this fix, function PerformORCombine does not use the APInt equality
operator if the APInt values returned by 'isConstantSplat' differ in BitWidth.
In that case they are different and no comparison is needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199119 91177308-0d34-0410-b5e6-96231b3b80d8
This patch covered 2 more scenarios:
1. Two operands of shuffle_vector are the same, like
%shuffle.i = shufflevector <8 x i8> %a, <8 x i8> %a, <8 x i32> <i32 0, i32 2, i32 4, i32 6, i32 8, i32 10, i32 12, i32 14>
2. One of operands is undef, like
%shuffle.i = shufflevector <8 x i8> %a, <8 x i8> undef, <8 x i32> <i32 0, i32 2, i32 4, i32 6, i32 8, i32 10, i32 12, i32 14>
After this patch, perm instructions will have chance to be emitted instead of lots of INS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199069 91177308-0d34-0410-b5e6-96231b3b80d8
The target specific parser should return `false' if the target AsmParser handles
the directive, and `true' if the generic parser should handle the directive.
Many of the target specific directive handlers would `return Error' which does
not follow these semantics. This change simply changes the target specific
routines to conform to the semantis of the ParseDirective correctly.
Conformance to the semantics improves diagnostics emitted for the invalid
directives. X86 is taken as a sample to ensure that multiple diagnostics are
not presented for a single error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199068 91177308-0d34-0410-b5e6-96231b3b80d8
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8