62 Commits

Author SHA1 Message Date
Sanjay Patel
19c4925cc0 [LoopUtils] fix variable name to match FMF vocabulary; NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319928 91177308-0d34-0410-b5e6-96231b3b80d8
2017-12-06 19:11:23 +00:00
Sanjay Patel
00e900afdb [IR] redefine 'UnsafeAlgebra' / 'reassoc' fast-math-flags and add 'trans' fast-math-flag
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html

...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.

As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the 
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic 
reassociation - 'AllowReassoc'.

We're also adding a bit to allow approximations for library functions called 'ApproxFunc' 
(this was initially proposed as 'libm' or similar).

...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did 
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits), 
but that's apparently already used for other purposes. Also, I don't think we can just 
add a field to FPMathOperator because Operator is not intended to be instantiated. 
We'll defer movement of FMF to another day.

We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.

Finally, this change is binary incompatible with existing IR as seen in the 
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile 
them. For example, if nsw is ever replaced with something else, dropping it would be 
a valid way to upgrade the IR." 
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR 
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will 
fail to optimize some previously 'fast' code because it's no longer recognized as 
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.

Note: an inter-dependent clang commit to use the new API name should closely follow 
commit.

Differential Revision: https://reviews.llvm.org/D39304



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317488 91177308-0d34-0410-b5e6-96231b3b80d8
2017-11-06 16:27:15 +00:00
Hans Wennborg
3f5061a5cf Fix a -Wparentheses warning. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@314936 91177308-0d34-0410-b5e6-96231b3b80d8
2017-10-04 21:14:07 +00:00
Marcello Maggioni
2766ade041 [LoopDeletion] Move deleteDeadLoop to to LoopUtils. NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@314934 91177308-0d34-0410-b5e6-96231b3b80d8
2017-10-04 20:42:46 +00:00
Alina Sbirlea
154124adc3 Refactor collectChildrenInLoop to LoopUtils [NFC]
Summary: Move to LoopUtils method that collects all children of a node inside a loop.

Reviewers: majnemer, sanjoy

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D37870

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313322 91177308-0d34-0410-b5e6-96231b3b80d8
2017-09-15 00:04:16 +00:00
Ayal Zaks
745921f87f [LV] Minor savings to Sink casts to unravel first order recurrence
Two minor savings: avoid copying the SinkAfter map and avoid moving a cast if it
is not needed.

Differential Revision: https://reviews.llvm.org/D36408


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@310910 91177308-0d34-0410-b5e6-96231b3b80d8
2017-08-15 08:32:59 +00:00
Dinar Temirbulatov
86f1776395 [LoopUtils] Add an extra parameter OpValue to propagateIRFlags function,
If OpValue is non-null, we only consider operations similar to OpValue
when intersecting.

Differential Revision: https://reviews.llvm.org/D35292


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@308428 91177308-0d34-0410-b5e6-96231b3b80d8
2017-07-19 10:02:07 +00:00
Ayal Zaks
e050d57c74 [LV] Sink casts to unravel first order recurrence
Check if a single cast is preventing handling a first-order-recurrence Phi,
because the scheduling constraints it imposes on the first-order-recurrence
shuffle are infeasible; but they can be made feasible by moving the cast
downwards. Record such casts and move them when vectorizing the loop.

Differential Revision: https://reviews.llvm.org/D33058


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306884 91177308-0d34-0410-b5e6-96231b3b80d8
2017-06-30 21:05:06 +00:00
Chandler Carruth
e27904f6c7 [LoopSimplify] Re-instate r306081 with a bug fix w.r.t. indirectbr.
This was reverted in r306252, but I already had the bug fixed and was
just trying to form a test case.

The original commit factored the logic for forming dedicated exits
inside of LoopSimplify into a helper that could be used elsewhere and
with an approach that required fewer intermediate data structures. See
that commit for full details including the change to the statistic, etc.

The code looked fine to me and my reviewers, but in fact didn't handle
indirectbr correctly -- it left the 'InLoopPredecessors' vector dirty.

If you have code that looks *just* right, you can end up leaking these
predecessors into a subsequent rewrite, and crash deep down when trying
to update PHI nodes for predecessors that don't exist.

I've added an assert that makes the bug much more obvious, and then
changed the code to reliably clear the vector so we don't get this bug
again in some other form as the code changes.

I've also added a test case that *does* manage to catch this while also
giving some nice positive coverage in the face of indirectbr.

The real code that found this came out of what I think is CPython's
interpreter loop, but any code with really "creative" interpreter loops
mixing indirectbr and other exit paths could manage to tickle the bug.
I was hard to reduce the original test case because in addition to
having a particular pattern of IR, the whole thing depends on the order
of the predecessors which is in turn depends on use list order. The test
case added here was designed so that in multiple different predecessor
orderings it should always end up going down the same path and tripping
the same bug. I hope. At least, it tripped it for me without
manipulating the use list order which is better than anything bugpoint
could do...

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306257 91177308-0d34-0410-b5e6-96231b3b80d8
2017-06-25 22:45:31 +00:00
Daniel Jasper
6cf9acbae6 Revert "[LoopSimplify] Factor the logic to form dedicated exits into a utility."
This leads to a segfault. Chandler already has a test case and should be
able to recommit with a fix soon.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306252 91177308-0d34-0410-b5e6-96231b3b80d8
2017-06-25 17:58:25 +00:00
Craig Topper
bd1a80dfb0 [Analysis][Transforms] Use commutable matchers instead of m_CombineOr in a few places. NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306204 cdac9f57-aa62-4fd3-8940-286f4534e8a0
2017-06-24 06:24:01 +00:00
Chandler Carruth
9dc2b94a11 [LoopSimplify] Factor the logic to form dedicated exits into a utility.
I want to use the same logic as LoopSimplify to form dedicated exits in
another pass (SimpleLoopUnswitch) so I wanted to factor it out here.

I also noticed that there is a pretty significantly more efficient way
to implement this than the way the code in LoopSimplify worked. We don't
need to actually retain the set of unique exit blocks, we can just
rewrite them as we find them and use only a set to deduplicate.

This did require changing one part of LoopSimplify to not re-use the
unique set of exits, but it only used it to check that there was
a single unique exit. That part of the code is about to walk the exiting
blocks anyways, so it seemed better to rewrite it to use those exiting
blocks to compute this property on-demand.

I also had to ditch a statistic, but it doesn't seem terribly valuable.

Differential Revision: https://reviews.llvm.org/D34049

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306081 91177308-0d34-0410-b5e6-96231b3b80d8
2017-06-23 04:03:04 +00:00
Chandler Carruth
e3e43d9d57 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304787 91177308-0d34-0410-b5e6-96231b3b80d8
2017-06-06 11:49:48 +00:00
Amara Emerson
0dd30f878b Add a late IR expansion pass for the experimental reduction intrinsics.
This pass uses a new target hook to decide whether or not to expand a particular
intrinsic to the shuffevector sequence.

Differential Revision: https://reviews.llvm.org/D32245



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302631 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-10 09:42:49 +00:00
Amara Emerson
8f1f7ce9d1 Introduce experimental generic intrinsics for horizontal vector reductions.
- This change allows targets to opt-in to using them instead of the log2
  shufflevector algorithm.
- The SLP and Loop vectorizers have the common code to do shuffle reductions
  factored out into LoopUtils, and now have a unified interface for generating
  reductions regardless of the preference of the target. LoopUtils now uses TTI
  to determine what kind of reductions the target wants to handle.
- For CodeGen, basic legalization support is added.

Differential Revision: https://reviews.llvm.org/D30086



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302514 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-09 10:43:25 +00:00
Evgeniy Stepanov
724559be8d Revert "Compute safety information in a much finer granularity."
Use-after-free in llvm::isGuaranteedToExecute.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301214 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-24 18:25:07 +00:00
Xin Tong
fa273182f4 Compute safety information in a much finer granularity.
Summary:
Instead of keeping a variable indicating whether there are early exits
in the loop.  We keep all the early exits. This improves LICM's ability to
move instructions out of the loop based on is-guaranteed-to-execute.

I am going to update compilation time as well soon.

Reviewers: hfinkel, sanjoy, efriedma, mkuper

Reviewed By: hfinkel

Subscribers: llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D32433

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301196 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-24 17:12:22 +00:00
Anna Thomas
0bd00d7d97 [LV] Fix the vector code generation for first order recurrence
Summary:
In first order recurrences where phi's are used outside the loop,
we should generate an additional vector.extract of the second last element from
the vectorized phi update.
This is because we require the phi itself (which is the value at the second last
iteration of the vector loop) and not the phi's update within the loop.
Also fix the code gen when we just unroll, but don't vectorize.
Fixes PR32396.

Reviewers: mssimpso, mkuper, anemet

Subscribers: llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D31979

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300238 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-13 18:59:25 +00:00
Anna Thomas
3d57035bd9 [LV] Avoid vectorizing first order recurrence when phi uses are outside loop
In the vectorization of first order recurrence, we vectorize such
that the last element in the vector will be the one extracted to pass into the
scalar remainder loop. However, this is not true when there is a phi (other
than the primary induction variable) is used outside the loop.
In such a case, we need the value from the second last iteration (i.e.
the phi value), not the last iteration (which would be the phi update).
I've added a test case for this. Also see PR32396.

A follow up patch would generate the correct code gen for such cases,
and turn this vectorization on.

Differential Revision: https://reviews.llvm.org/D31910

Reviewers: mssimpso

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299985 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-11 21:02:00 +00:00
Michael Kuperstein
517331b4f0 Fix up a comment. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292425 91177308-0d34-0410-b5e6-96231b3b80d8
2017-01-18 19:05:48 +00:00
Michael Kuperstein
c3a226d450 [LV] Allow reductions that have several uses outside the loop
We currently check whether a reduction has a single outside user. We don't
really need to require that - we just need to make sure a single value is
used externally. The number of external users of that value shouldn't actually
matter.

Differential Revision: https://reviews.llvm.org/D28830


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292424 91177308-0d34-0410-b5e6-96231b3b80d8
2017-01-18 19:02:52 +00:00
Michael Kuperstein
c7eb5df9be [LV] Don't panic when encountering the IV of an outer loop.
Bail out instead of asserting when we encounter this situation,
which can actually happen.

The reason the test uses the new PM is that the "bad" phi, incidentally, gets
cleaned up by LoopSimplify. But LICM can create this kind of phi and preserve
loop simplify form, so the cleanup has no chance to run.

This fixes PR31190.
We may want to solve this in a less conservative manner, since this phi is
actually uniform within the inner loop (or we may want LICM to output a cleaner
promotion to begin with).

Differential Revision: https://reviews.llvm.org/D28490


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291589 91177308-0d34-0410-b5e6-96231b3b80d8
2017-01-10 19:32:30 +00:00
Michael Kuperstein
ceceabb371 Remove stale comment. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288572 91177308-0d34-0410-b5e6-96231b3b80d8
2016-12-03 01:59:13 +00:00
Michael Kuperstein
39c1e3d2d7 [LoopUnroll] Implement profile-based loop peeling
This implements PGO-driven loop peeling.

The basic idea is that when the average dynamic trip-count of a loop is known,
based on PGO, to be low, we can expect a performance win by peeling off the
first several iterations of that loop.
Unlike unrolling based on a known trip count, or a trip count multiple, this
doesn't save us the conditional check and branch on each iteration. However,
it does allow us to simplify the straight-line code we get (constant-folding,
etc.). This is important given that we know that we will usually only hit this
code, and not the actual loop.

This is currently disabled by default.

Differential Revision: https://reviews.llvm.org/D25963


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288274 91177308-0d34-0410-b5e6-96231b3b80d8
2016-11-30 21:13:57 +00:00
Dehao Chen
3ecb35bc13 Use profile info to adjust loop unroll threshold.
Summary:
For flat loop, even if it is hot, it is not a good idea to unroll in runtime, thus we set a lower partial unroll threshold.
For hot loop, we set a higher unroll threshold and allows expensive tripcount computation to allow more aggressive unrolling.

Reviewers: davidxl, mzolotukhin

Subscribers: sanjoy, mehdi_amini, llvm-commits

Differential Revision: https://reviews.llvm.org/D26527

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287186 91177308-0d34-0410-b5e6-96231b3b80d8
2016-11-17 01:17:02 +00:00
Igor Laevsky
22eba5a2e2 [LCSSA] Perform LCSSA verification only for the current loop nest.
Now LPPassManager will run LCSSA verification only for the top-level loop
which was processed on the current iteration.

Differential Revision: https://reviews.llvm.org/D25873



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285394 91177308-0d34-0410-b5e6-96231b3b80d8
2016-10-28 12:57:20 +00:00
Adam Nemet
d138c45c40 [LoopUnroll] Use OptimizationRemarkEmitter directly not via the analysis pass
We can't mark ORE (a function pass) preserved as required by the loop
passes because that is how we ensure that the required passes like
LazyBFI are all available any time ORE is used.  See the new comments in
the patch.

Instead we use it directly just like the inliner does in D22694.

As expected there is some additional overhead after removing the caching
provided by analysis passes.  The worst case, I measured was
LNT/CINT2006_ref/401.bzip2 which regresses by 12%.  As before, this only
affects -Rpass-with-hotness and not default compilation.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279829 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-26 15:58:34 +00:00
David Majnemer
2d62ce6ee8 Use the range variant of find/find_if instead of unpacking begin/end
If the result of the find is only used to compare against end(), just
use is_contained instead.

No functionality change is intended.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278469 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-12 03:55:06 +00:00
David Majnemer
dc9c737666 Use range algorithms instead of unpacking begin/end
No functionality change is intended.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278417 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-11 21:15:00 +00:00
Adam Nemet
c4f6d8cd25 [LoopUnroll] Include hotness of region in opt remark
LoopUnroll is a loop pass, so the analysis of OptimizationRemarkEmitter
is added to the common function analysis passes that loop passes
depend on.

The BFI and indirectly BPI used in this pass is computed lazily so no
overhead should be observed unless -pass-remarks-with-hotness is used.

This is how the patch affects the O3 pipeline:

         Dominator Tree Construction
         Natural Loop Information
         Canonicalize natural loops
         Loop-Closed SSA Form Pass
         Basic Alias Analysis (stateless AA impl)
         Function Alias Analysis Results
         Scalar Evolution Analysis
+        Lazy Branch Probability Analysis
+        Lazy Block Frequency Analysis
+        Optimization Remark Emitter
         Loop Pass Manager
           Rotate Loops
           Loop Invariant Code Motion
           Unswitch loops
         Simplify the CFG
         Dominator Tree Construction
         Basic Alias Analysis (stateless AA impl)
         Function Alias Analysis Results
         Combine redundant instructions
         Natural Loop Information
         Canonicalize natural loops
         Loop-Closed SSA Form Pass
         Scalar Evolution Analysis
+        Lazy Branch Probability Analysis
+        Lazy Block Frequency Analysis
+        Optimization Remark Emitter
         Loop Pass Manager
           Induction Variable Simplification
           Recognize loop idioms
           Delete dead loops
           Unroll loops
...

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277203 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-29 19:29:47 +00:00
Adam Nemet
0f30994ef7 [LoopUtils] Sort headers
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@276776 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-26 17:52:02 +00:00
Elena Demikhovsky
ba55955caa [Loop Vectorizer] Handling loops FP induction variables.
Allowed loop vectorization with secondary FP IVs. Like this:
float *A;
float x = init;
for (int i=0; i < N; ++i) {
  A[i] = x;
  x -= fp_inc;
}

The auto-vectorization is possible when the induction binary operator is "fast" or the function has "unsafe" attribute.

Differential Revision: https://reviews.llvm.org/D21330



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@276554 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-24 07:24:54 +00:00
Eli Friedman
df383ca881 [LICM] Make isGuaranteedToExecute more accurate.
Summary:
Make isGuaranteedToExecute use the
isGuaranteedToTransferExecutionToSuccessor helper, and make that helper
a bit more accurate.

There's a potential performance impact here from assuming that arbitrary
calls might not return. This probably has little impact on loads and
stores to a pointer because most things alias analysis can reason about
are dereferenceable anyway. The other impacts, like less aggressive
hoisting of sdiv by a variable and less aggressive hoisting around
volatile memory operations, are unlikely to matter for real code.

This also impacts SCEV, which uses the same helper.  It's a minor
improvement there because we can tell that, for example, memcpy always
returns normally. Strictly speaking, it's also introducing
a bug, but it's not any worse than everywhere else we assume readonly
functions terminate.

Fixes http://llvm.org/PR27857.

Reviewers: hfinkel, reames, chandlerc, sanjoy

Subscribers: broune, llvm-commits

Differential Revision: http://reviews.llvm.org/D21167

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272489 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-11 21:48:25 +00:00
Evgeniy Stepanov
6bb889bace Move isGuaranteedToExecute out of LICM.
Also rename LICMSafetyInfo to LoopSafetyInfo.
Both will be used in LoopUnswitch in a separate change.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272420 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-10 20:03:17 +00:00
Easwaran Raman
33933df91a [PM] Port LCSSA to the new PM.
Differential Revision: http://reviews.llvm.org/D21090


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272294 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-09 19:44:46 +00:00
Tim Northover
e1ebc76f2d Vectorizer: track non-fast FP instructions through phis when finding reductions.
When we traced through a phi node looking for floating-point reductions, we
forgot whether we'd ever seen an instruction without fast-math flags (that
would block vectorization). This propagates it through to the end.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271015 91177308-0d34-0410-b5e6-96231b3b80d8
2016-05-27 16:40:27 +00:00
Elena Demikhovsky
b6e58d8bd0 [LoopVectorize] Handling induction variable with non-constant step.
Allow vectorization when the step is a loop-invariant variable.
This is the loop example that is getting vectorized after the patch:

 int int_inc;
 int bar(int init, int *restrict A, int N) {

  int x = init;
  for (int i=0;i<N;i++){
    A[i] = x;
    x += int_inc;
  }
  return x;
 }

"x" is an induction variable with *loop-invariant* step.
But it is not a primary induction. Primary induction variable with non-constant step is not handled yet.

Differential Revision: http://reviews.llvm.org/D19258



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269023 91177308-0d34-0410-b5e6-96231b3b80d8
2016-05-10 07:33:35 +00:00
Silviu Baranga
debb790c77 [LV] Identify more induction PHIs by coercing expressions to AddRecExprs
Summary:
Some PHIs can have expressions that are not AddRecExprs due to the presence
of sext/zext instructions. In order to prevent the Loop Vectorizer from
bailing out when encountering these PHIs, we now coerce the SCEV
expressions to AddRecExprs using SCEV predicates (when possible).

We only do this when the alternative would be to not vectorize.

Reviewers: mzolotukhin, anemet

Subscribers: mssimpso, sanjoy, mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D17153

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268633 91177308-0d34-0410-b5e6-96231b3b80d8
2016-05-05 15:20:39 +00:00
Adam Nemet
702039b963 [LoopUtils] Extend findStringMetadataForLoop to return the value for metadata
E.g. for:

  !1 = {"llvm.distribute", i32 1}

it now returns the MDOperand for 1.

I will use this in LoopDistribution to check the value of the metadata.

Note that the change is backward-compatible with its current use in
LoopVersioningLICM.  An Optional implicitly converts to a bool depending
whether it contains a value or not.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267190 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-22 19:10:05 +00:00
Adam Nemet
e69bdcfeab [LoopUtils] Fix typo in comment
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267016 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-21 17:33:22 +00:00
Adam Nemet
07c165335d [LoopUtils] Add asserts to findStringMetadataForLoop. NFC
These ensure that operand array has at least one element and it is the
self-reference.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267015 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-21 17:33:20 +00:00
Adam Nemet
b4a76b3222 [LoopUtils] Move def of findStringMetadataForLoop to LoopUtils.cpp. NFC
The decl is in LoopUtils.h.  I think that this was added to
LoopVersioningLICM.cpp by mistake.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267014 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-21 17:33:17 +00:00
Matthew Simpson
09e9ded8a1 [LoopUtils, LV] Fix PR27246 (first-order recurrences)
This patch ensures that when we detect first-order recurrences, we reject a phi
node if its previous value is also a phi node. During vectorization the initial
and previous values of the recurrence are shuffled together to create the value
for the current iteration. However, phi nodes are not widened like other
instructions. This fixes PR27246.

Differential Revision: http://reviews.llvm.org/D18971

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265983 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-11 19:48:18 +00:00
Nirav Dave
e0d3b8510d Remove HasFnAttribute guards to getFnAttribute calls
These checks are redundant and can be removed

Reviewers: hans

Subscribers: llvm-commits, mzolotukhin

Differential Revision: http://reviews.llvm.org/D18564

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@264872 91177308-0d34-0410-b5e6-96231b3b80d8
2016-03-30 15:41:12 +00:00
Matthew Simpson
72b5335cac [LoopUtils, LV] Fix PR26734
The vectorization of first-order recurrences (r261346) caused PR26734. When
detecting these recurrences, we need to ensure that the previous value is
actually defined inside the loop. This patch includes the fix and test case.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262624 91177308-0d34-0410-b5e6-96231b3b80d8
2016-03-03 16:12:01 +00:00
Matthew Simpson
3dd74513a8 [LV] Vectorize first-order recurrences
This patch enables the vectorization of first-order recurrences. A first-order
recurrence is a non-reduction recurrence relation in which the value of the
recurrence in the current loop iteration equals a value defined in the previous
iteration. The load PRE of the GVN pass often creates these recurrences by
hoisting loads from within loops.

In this patch, we add a new recurrence kind for first-order phi nodes and
attempt to vectorize them if possible. Vectorization is performed by shuffling
the values for the current and previous iterations. The vectorization cost
estimate is updated to account for the added shuffle instruction.

Contributed-by: Matthew Simpson and Chad Rosier <mcrosier@codeaurora.org>
Differential Revision: http://reviews.llvm.org/D16197

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261346 91177308-0d34-0410-b5e6-96231b3b80d8
2016-02-19 17:56:08 +00:00
Chandler Carruth
eca46e623a [LPM] Factor all of the loop analysis usage updates into a common helper
routine.

We were getting this wrong in small ways and generally being very
inconsistent about it across loop passes. Instead, let's have a common
place where we do this. One minor downside is that this will require
some analyses like SCEV in more places than they are strictly needed.
However, this seems benign as these analyses are complete no-ops, and
without this consistency we can in many cases end up with the legacy
pass manager scheduling deciding to split up a loop pass pipeline in
order to run the function analysis half-way through. It is very, very
annoying to fix these without just being very pedantic across the board.

The only loop passes I've not updated here are ones that use
AU.setPreservesAll() such as IVUsers (an analysis) and the pass printer.
They seemed less relevant.

With this patch, almost all of the problems in PR24804 around loop pass
pipelines are fixed. The one remaining issue is that we run simplify-cfg
and instcombine in the middle of the loop pass pipeline. We've recently
added some loop variants of these passes that would seem substantially
cleaner to use, but this at least gets us much closer to the previous
state. Notably, the seven loop pass managers is down to three.

I've not updated the loop passes using LoopAccessAnalysis because that
analysis hasn't been fully wired into LoopSimplify/LCSSA, and it isn't
clear that those transforms want to support those forms anyways. They
all run late anyways, so this is harmless. Similarly, LSR is left alone
because it already carefully manages its forms and doesn't need to get
fused into a single loop pass manager with a bunch of other loop passes.

LoopReroll didn't use loop simplified form previously, and I've updated
the test case to match the trivially different output.

Finally, I've also factored all the pass initialization for the passes
that use this technique as well, so that should be done regularly and
reliably.

Thanks to James for the help reviewing and thinking about this stuff,
and Ben for help thinking about it as well!

Differential Revision: http://reviews.llvm.org/D17435

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261316 91177308-0d34-0410-b5e6-96231b3b80d8
2016-02-19 10:45:18 +00:00
Sanjay Patel
bd8623ae5c function names start with a lower case letter ; NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257496 91177308-0d34-0410-b5e6-96231b3b80d8
2016-01-12 18:03:37 +00:00
Silviu Baranga
bdd73bcbd7 Revert r255115 until we figure out how to fix the bot failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255117 91177308-0d34-0410-b5e6-96231b3b80d8
2015-12-09 15:25:28 +00:00
Silviu Baranga
69c30d5b6c [LV][LAA] Add a layer over SCEV to apply run-time checked knowledge on SCEV expressions
Summary:
This change creates a layer over ScalarEvolution for LAA and LV, and centralizes the
usage of SCEV predicates. The SCEVPredicatedLayer takes the statically deduced knowledge
by ScalarEvolution and applies the knowledge from the SCEV predicates. The end goal is
that both LAA and LV should use this interface everywhere.

This also solves a problem involving the result of SCEV expression rewritting when
the predicate changes. Suppose we have the expression (sext {a,+,b}) and two predicates
  P1: {a,+,b} has nsw
  P2: b = 1.

Applying P1 and then P2 gives us {a,+,1}, while applying P2 and the P1 gives us
sext({a,+,1}) (the AddRec expression was changed by P2 so P1 no longer applies).
The SCEVPredicatedLayer maintains the order of transformations by feeding back
the results of previous transformations into new transformations, and therefore
avoiding this issue.

The SCEVPredicatedLayer maintains a cache to remember the results of previous
SCEV rewritting results. This also has the benefit of reducing the overall number
of expression rewrites.

Reviewers: mzolotukhin, anemet

Subscribers: jmolloy, sanjoy, llvm-commits

Differential Revision: http://reviews.llvm.org/D14296

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255115 91177308-0d34-0410-b5e6-96231b3b80d8
2015-12-09 15:03:52 +00:00