the instruction defenitions and ISEL reflect this.
Prior to this patch these instructions took an i32i8imm, and the high bits were
dropped during encoding. This led to incorrect behavior for shifts by
immediates higher than 255. This patch fixes that issue by detecting large
immediate shifts and returning constant zero (for logical shifts) or capping
the shift amount at an encodable value (for arithmetic shifts).
Fixes <rdar://problem/14968098>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193096 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions are logically related as they allow read/write of MSA control registers.
Currently MSA control registers are emitted by number but hopefully that will change as soon
as GAS starts accepting them by name as that would make the assembly easier to read.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193078 91177308-0d34-0410-b5e6-96231b3b80d8
The second parameter of the SLD intrinsic is the number of columns (GPR) to
slide left the source array.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193076 91177308-0d34-0410-b5e6-96231b3b80d8
This is another (final?) stab at making us able to parse our own asm output
on Windows.
Symbols on Windows often contain @'s and ?'s in their names. Our asm parser
didn't like this. ?'s were not allowed, and @'s were intepreted as trying to
reference PLT/GOT/etc.
We can't just add quotes around the bad names, since e.g. for MinGW, we use gas
to assemble, and it doesn't like quotes in some places (notably in .def
directives).
This commit makes us allow ?'s in symbol names, and @'s in symbol names for MS
assembly.
Differential Revision: http://llvm-reviews.chandlerc.com/D1978
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193000 91177308-0d34-0410-b5e6-96231b3b80d8
This caused the clang-native-mingw32-win7 buildbot to break.
The assembler was complaining about the following lines that were showing up
in the asm for CrashRecoveryContext.cpp:
movl $"__ZL16ExceptionHandlerP19_EXCEPTION_POINTERS@4", 4(%eax)
calll "_AddVectoredExceptionHandler@8"
.def "__ZL16ExceptionHandlerP19_EXCEPTION_POINTERS@4";
"__ZL16ExceptionHandlerP19_EXCEPTION_POINTERS@4":
calll "_RemoveVectoredExceptionHandler@4"
Reverting for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192940 91177308-0d34-0410-b5e6-96231b3b80d8
This commit implements the correct lowering of the
COPY_STRUCT_BYVAL_I32 pseudo-instruction for thumb1 targets.
Previously, the lowering of COPY_STRUCT_BYVAL_I32 generated the
post-increment forms of ldr/ldrh/ldrb instructions. Thumb1 does not
have the post-increment form of these instructions so the generated
assembly contained invalid instructions.
Passing the generated assembly to gcc caused it to complain with an
error like this:
Error: cannot honor width suffix -- `ldrb r3,[r0],#1'
and the integrated assembler would generate an object file with an
invalid instruction encoding.
This commit contains a small test case that demonstrates the problem
with thumb1 targets as well as an expanded test case that more
throughly tests the lowering of byval struct passing for arm,
thumb1, and thumb2 targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192916 91177308-0d34-0410-b5e6-96231b3b80d8
This commit refactors the lowering of the COPY_STRUCT_BYVAL_I32
pseudo-instruction in the ARM backend. We introduce a new helper
class that encapsulates all of the operations needed during the
lowering. The operations are implemented for each subtarget in
different subclasses. Currently only arm and thumb2 subtargets are
supported.
This refactoring was done to easily implement support for thumb1
subtargets. This initial patch does not add support for thumb1, but
is only a refactoring. A follow on patch will implement the support
for thumb1 subtargets.
No intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192915 91177308-0d34-0410-b5e6-96231b3b80d8
All of the Core API functions have versions which accept explicit context, in
addition to ones which work on global context. This commit adds functions
which accept explicit context to the Target API for consistency.
Patch by Peter Zotov
Differential Revision: http://llvm-reviews.chandlerc.com/D1912
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192913 91177308-0d34-0410-b5e6-96231b3b80d8
class. The instruction class includes the signed saturating doubling
multiply-add long, signed saturating doubling multiply-subtract long, and
the signed saturating doubling multiply long instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192908 91177308-0d34-0410-b5e6-96231b3b80d8
These were present in a previous version of the MSA spec but are not
present in the published version. There is no hardware that uses these
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192888 91177308-0d34-0410-b5e6-96231b3b80d8
Define these three instructions in alphabetical order (like the rest of the
file).
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192880 91177308-0d34-0410-b5e6-96231b3b80d8
Consider the following:
typedef unsigned short ushort4U __attribute__((ext_vector_type(4),
aligned(2)));
typedef unsigned short ushort4 __attribute__((ext_vector_type(4)));
typedef unsigned short ushort8 __attribute__((ext_vector_type(8)));
typedef int int4 __attribute__((ext_vector_type(4)));
int4 __bbase_cvt_int(ushort4 v) {
ushort8 a;
a.lo = v;
return _mm_cvtepu16_epi32(a);
}
This generates the, not unreasonable, IR:
define <4 x i32> @foo0(double %v.coerce) nounwind ssp {
%tmp = bitcast double %v.coerce to <4 x i16>
%tmp1 = shufflevector <4 x i16> %tmp, <4 x i16> undef, <8 x i32> <i32
%0, i32 1, i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef>
%tmp2 = tail call <4 x i32> @llvm.x86.sse41.pmovzxwd(<8 x i16> %tmp1)
ret <4 x i32> %tmp2
}
The problem is when type legalization gets hold of the v4i16. It
legalizes that by spilling to the stack, then doing a zero-extending
load. Things go even more silly from there, ending up with something
like:
_foo0:
movsd %xmm0, -8(%rsp) <== Spill to the stack.
movq -8(%rsp), %xmm0 <== Reload it right back out.
pmovzxwd %xmm0, %xmm1 <== Here's what we actually asked for.
pblendw $1, %xmm1, %xmm0 <== We don't need this at all
pmovzxwd %xmm0, %xmm0 <== We already did this
ret
The v8i8 to v8i16 zext intrinsic gives even worse results, with two
table lookups via pshufb instructions(!!).
To avoid all that, we can move the bitcasting until after we've formed
the wider (legal) vector type. Then our normal codegen flows along
nicely and we get the expected:
_foo0:
pmovzxwd %xmm0, %xmm0
ret
rdar://15245794
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192866 91177308-0d34-0410-b5e6-96231b3b80d8
The reason this got reverted was that the @feat.00 symbol which was emitted
for every TU became quoted, and on cygwin/mingw we use the gas assembler which
couldn't handle the quotes.
This commit fixes the problem by only emitting @feat.00 for win32, where we use
clang -cc1as to assemble. gas would just drop this symbol anyway, so there is no
loss there.
With @feat.00 gone, there shouldn't be quoted symbols showing up on cygwin since
it uses the Itanium ABI, which doesn't put these funny characters in symbols.
> Because of win32 mangling, we produce symbol and section names with
> funny characters in them, most notably @ characters.
>
> MC would choke on trying to parse its own assembly output. This patch addresses
> that by:
>
> - Making @ trigger quoting of symbol names
> - Also quote section names in the same way
> - Just parse section names like other identifiers (to allow for quotes)
> - Don't assume @ signifies a symbol variant if it is in a string.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192859 91177308-0d34-0410-b5e6-96231b3b80d8
We were calling llvm_unreachable() when failing to optimize the
branch into if case. However, it is still possible for us
to structurize the CFG by duplicating blocks even if this optimization
fails.
Reviewed-by: Vincent Lejeune<vljn at ovi.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192813 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch we would assert when building llvm as multiple shared
libraries (cmake's BUILD_SHARED_LIBS). The problem was the line
if (T.AsmStreamerCtorFn == Target::createDefaultAsmStreamer)
which returns false because of -fvisibility-inlines-hidden. It is easy
to fix just this one case, but I decided to try to also make the
registration more strict. It looks like the old logic for ignoring
followup registration was just a temporary hack that outlived its
usefulness.
This patch converts the ifs to asserts, fixes the few cases that were
registering twice and makes sure all the asserts compare with null.
Thanks for Joerg for reporting the problem and reviewing the patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192803 91177308-0d34-0410-b5e6-96231b3b80d8
The input to an RxSBG operation can be narrower as long as the upper bits
are don't care. This fixes a FIXME added in r192783.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192790 91177308-0d34-0410-b5e6-96231b3b80d8
We previously used the default expansion to SELECT_CC, which in turn would
expand to "LHI; BRC; LHI". In most cases it's better to use an IPM-based
sequence instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192784 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the SelectionDAG scheduling preference to source
order. Soon, the SelectionDAG scheduler can be bypassed saving
a nice chunk of compile time.
Performance differences that result from this change are often a
consequence of register coalescing. The register coalescer is far from
perfect. Bugs can be filed for deficiencies.
On x86 SandyBridge/Haswell, the source order schedule is often
preserved, particularly for small blocks.
Register pressure is generally improved over the SD scheduler's ILP
mode. However, we are still able to handle large blocks that require
latency hiding, unlike the SD scheduler's BURR mode. MI scheduler also
attempts to discover the critical path in single-block loops and
adjust heuristics accordingly.
The MI scheduler relies on the new machine model. This is currently
unimplemented for AVX, so we may not be generating the best code yet.
Unit tests are updated so they don't depend on SD scheduling heuristics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192750 91177308-0d34-0410-b5e6-96231b3b80d8
- Type of index used in extract_vector_elt or insert_vector_elt supposes
to be TLI.getVectorIdxTy() which is pointer type on most targets. It'd
better to truncate (or zero-extend in case it's changed later) it to
mask element type to guarantee they are matching instead of asserting
that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192722 91177308-0d34-0410-b5e6-96231b3b80d8
- Lower signed division by constant powers-of-2 to target-independent
DAG operators instead of target-dependent ones to support them better
on targets where vector types are legal but shift operators on that
types are illegal. E.g., on AVX, PSRAW is only available on <8 x i16>
though <16 x i16> is a legal type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192721 91177308-0d34-0410-b5e6-96231b3b80d8