Source code was assuming that llvm-config.h would be included somehow but
up to r247253 that added #include "llvm/Support/Compiler.h" to StringRef.h
the config file was not actually included. The inclusion of llvm-config.h
caused a change of behaviour in tools/clang/test/Frontend/source-col-map.c:
previously it would output the original UTF-8 but now it outputs <U+03B1>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247409 91177308-0d34-0410-b5e6-96231b3b80d8
When the driver tries to locate a program by its name, e.g. a linker, it
scans the paths provided by the toolchain using the ScanDirForExecutable
function. If the lookup fails, the driver uses
llvm::sys::findProgramByName. Unlike llvm::sys::findProgramByName,
ScanDirForExecutable is not aware of file extensions. If the program has
the "exe" extension in its name, which is very common on Windows,
ScanDirForExecutable won't find it under the toolchain-provided paths.
This patch changes the Windows version of the "`can_execute`" function
called by ScanDirForExecutable to respect file extensions, similarly to
llvm::sys::findProgramByName.
Patch by Oleg Ranevskyy
Reviewers: rnk
Differential Revision: http://reviews.llvm.org/D12711
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247358 91177308-0d34-0410-b5e6-96231b3b80d8
and tremendously less reliant on the optimizer to fix things.
The code is always necessarily looking for the entire length of the
string when doing the equality tests in this find implementation, but it
previously was needlessly re-checking the size each time among other
annoyances.
By writing this so simply an ddirectly in terms of memcmp, it also is
about 8x faster in a debug build, which in turn makes FileCheck about 2x
faster in 'ninja check-llvm'. This saves about 8% of the time for
FileCheck-heavy parts of the test suite like the x86 backend tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247269 91177308-0d34-0410-b5e6-96231b3b80d8
re-using the resulting components rather than repeatedly splitting and
re-splitting to compute each component as part of the initializer list.
This is more work on PR23676. Sadly, it doesn't help much. It removes
the constructor from my profile, but doesn't make a sufficient dent in
the total time. But it should play together nicely with subsequent
changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247250 91177308-0d34-0410-b5e6-96231b3b80d8
with the StringRef::split method when used with a MaxSplit argument
other than '-1' (which nobody really does today, but which should
actually work).
The spec claimed both to split up to MaxSplit times, but also to append
<= MaxSplit strings to the vector. One of these doesn't make sense.
Given the name "MaxSplit", let's go with it being a max over how many
*splits* occur, which means the max on how many strings get appended is
MaxSplit+1. I'm not actually sure the implementation correctly provided
this logic either, as it used a really opaque loop structure.
The implementation was also playing weird games with nullptr in the data
field to try to rely on a totally opaque hidden property of the split
method that returns a pair. Nasty IMO.
Replace all of this with what is (IMO) simpler code that doesn't use the
pair returning split method, and instead just finds each separator and
appends directly. I think this is a lot easier to read, and it most
definitely matches the spec. Added some tests that exercise the corner
cases around StringRef() and StringRef("") that all now pass.
I'll start using this in code in the next commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247249 91177308-0d34-0410-b5e6-96231b3b80d8
splits to actually use the single character split routine which does
less work, and in a debug build is *substantially* faster.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247245 91177308-0d34-0410-b5e6-96231b3b80d8
on StringRef. Finding and splitting on a single character is
substantially faster than doing it on even a single character StringRef
-- we immediately get to a *very* tuned memchr call this way.
Even nicer, we get to this even in a debug build, shaving 18% off the
runtime of TripleTest.Normalization, helping PR23676 some more.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247244 91177308-0d34-0410-b5e6-96231b3b80d8
COFF sections are accompanied with an auxiliary symbol which includes a
checksum. This checksum used to be filled with just zero but this seems
to upset LINK.exe when it is processing a /INCREMENTAL link job.
Instead, fill the CheckSum field with the JamCRC of the section
contents. This matches MSVC's behavior.
This fixes PR19666.
N.B. A rather simple implementation of JamCRC is given. It implements
a byte-wise calculation using the method given by Sarwate. There are
implementations with higher throughput like slice-by-eight and making
use of PCLMULQDQ. We can switch to one of those techniques if it turns
out to be a significant use of time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246590 91177308-0d34-0410-b5e6-96231b3b80d8
architecture string is something quite weird. Similarly delay calling
the BPF parsing code, although that is more reasonable.
To understand why I was motivated to make this change, it cuts the time
for running the ADT TripleTest unittests by a factor of two in
non-optimized builds (the developer default) and reduces my 'check-llvm'
time by a full 15 seconds. The implementation of parseARMArch is *that*
slow. I tried to fix it in the prior series of commits, but frankly,
I have no idea how to finish fixing it. The entire premise of the
function (to allow 'v7a-unknown-linux' or some such to parse as an
'arm-unknown-linux' triple) seems completely insane to me, but I'll let
the ARM folks sort that out. At least it is now out of the critical path
of every developer working on LLVM. It also will likely make some other
folks' code significantly faster as I've heard reports of 2% of time
spent in triple parsing even in optimized builds!
I'm not done making this code faster, but I am done trying to improve
the ARM target parsing code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246378 91177308-0d34-0410-b5e6-96231b3b80d8
of its strings when expanding the string literals from the macros, and
push all of the APIs to be StringRef instead of C-string APIs.
This (remarkably) removes a very non-trivial number of strlen calls. It
even deletes code and complexity from one of the primary users -- Clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246374 91177308-0d34-0410-b5e6-96231b3b80d8
the necessary tables.
This will allow me to restructure the code and structures using this to
be significantly more efficient. It also removes the duplication of the
list of several enumerators. It also enshrines that the order of
enumerators match the order of the entries in the tables, something the
implementation code actually uses.
No functionality changed (yet).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246370 91177308-0d34-0410-b5e6-96231b3b80d8
parsing logic prior to making substantial changes to it.
This parsing logic is incredibly wasteful, so I'm planning to rewrite
it. Just unittesting the triple parsing logic spends well over 80% of
its time in the ARM parsing logic, and others have measured significant
time spent here in real production compiles.
Stay tuned...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246369 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Adds accessor functions for all the fields in llvm::fltSemantics. This will be used in MergeFunctions to order two APFloats with different semanatics.
Author: jrkoenig
Reviewers: jfb
Subscribers: dschuff, llvm-commits
Differential revision: http://reviews.llvm.org/D12253
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245999 91177308-0d34-0410-b5e6-96231b3b80d8
Remove support for Valgrind-based TSan, which hasn't been maintained for a
few years. We now use the TSan annotations only if LLVM is compiled with
-fsanitize=thread. We no longer need the weak function definitions as we
are guaranteed that our program is linked directly with the TSan runtime.
Differential Revision: http://reviews.llvm.org/D12121
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245374 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Windows system rarely have good PostScript viewers installed, but PDF viewers are common. So for viewing graphs, generate PDF files and open with the associated PDF viewer using cmd.exe's start command.
Reviewers: Bigcheese, aaron.ballman
Subscribers: aaron.ballman, JakeVanAdrighem, dwiberg, llvm-commits
Differential Revision: http://reviews.llvm.org/D11877
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245290 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When calling DisplayGraph and a PS viewer is chosen, two programs are executed: The GraphViz generator and the PostScript viewer. Always for the generator to finish to ensure that the .ps file is written before opening the viewer for that file. DisplayGraph's wait parameter refers to whether to wait until the user closes the viewer.
This happened on Windows and if none of the options to open the .dot file directly applies, also on Linux.
Reviewers: Bigcheese, chandlerc, aaron.ballman
Subscribers: dwiberg, aaron.ballman, llvm-commits
Differential Revision: http://reviews.llvm.org/D11876
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245289 91177308-0d34-0410-b5e6-96231b3b80d8
WebAssembly doesn't yet have a specified binary format, and it may not
end up being ELF, so we don't want the Triple class defaulting to ELF
for it at this time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245254 91177308-0d34-0410-b5e6-96231b3b80d8
The arch prefix string isn't currently being used for anything on
WebAssembly, but if it were to be used, it makes sense to use the
same arch prefix string for wasm32 and wasm64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245252 91177308-0d34-0410-b5e6-96231b3b80d8
This is a very minimal move support - it leaves the moved-from object in
a zombie state that is only valid for destruction and move assignment.
This seems fine to me, and leaving it in the default constructed state
would require adding more state to the object and potentially allocating
memory (!!!) and so seems like a Bad Idea.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245192 91177308-0d34-0410-b5e6-96231b3b80d8
Although targeting CoreCLR is similar to targeting MSVC, there are
certain important differences that the backend must be aware of
(e.g. differences in stack probes, EH, and library calls).
Differential Revision: http://reviews.llvm.org/D11012
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245115 91177308-0d34-0410-b5e6-96231b3b80d8
This patch makes the Darwin ARM backend take advantage of TargetParser. It
also teaches TargetParser about ARMV7K for the first time. This makes target
triple parsing more consistent across llvm.
Differential Revision: http://reviews.llvm.org/D11996
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245081 91177308-0d34-0410-b5e6-96231b3b80d8
This is faster and avoids the stream and SmallString state synchronization issue.
resync() is a no-op and may be safely deleted. I'll do so in a follow-up commit.
Reviewed by Rafael Espindola.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244870 91177308-0d34-0410-b5e6-96231b3b80d8
PrettyStackTraceHead is a LLVM_THREAD_LOCAL, which means it's just a global
in LLVM_ENABLE_THREADS=NO builds. If a CrashRecoveryContext is used with
code that uses PrettyStackEntries, and a crash happens, PrettyStackTraceHead is
currently not reset to its pre-crash value. These functions make it possible
to add a cleanup to such code that does this.
(Not reseting the value then causes the assert in ~PrettyStackTraceEntry() to
fire if the code outside of the CrashRecoveryContext also uses
PrettyStackEntries -- for example, clang when building a module.)
Part of PR11974.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244338 91177308-0d34-0410-b5e6-96231b3b80d8
libclang uses a CrashRecoveryContext, and building a module does too. If a
module gets built through libclang, nested CrashRecoveryContexts are used. They
work fine with threads as things are stored in ThreadLocal variables, but in
LLVM_ENABLE_THREADS=OFF builds the two recovery contexts would write to the
same globals.
To fix, keep active CrashRecoveryContextImpls in a list and have the global
point to the innermost one, and do something similar for
tlIsRecoveringFromCrash.
Necessary (but not sufficient) for PR11974 and PR20325
http://reviews.llvm.org/D11770
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244251 91177308-0d34-0410-b5e6-96231b3b80d8
If we don't have sys/wait.h and we're on a unix system there's no way
that several of the llvm tools work at all. This includes clang.
Just remove the configure and cmake checks entirely - we'll get a
build error instead of building something broken now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243957 91177308-0d34-0410-b5e6-96231b3b80d8
While theoratically required in pre-C++11 to avoid re-allocation upon call,
C++11 guarantees that c_str() returns a pointer to the internal array so
pre-calling c_str() is no longer required.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242983 91177308-0d34-0410-b5e6-96231b3b80d8