This is the full set of checks that clients can further filter. IOW,
it's client-agnostic. This makes LAA complete in the sense that it now
provides the two main results of its analysis precomputed:
1. memory dependences via getDepChecker().getInsterestingDependences()
2. run-time checks via getRuntimePointerCheck().getChecks()
However, as a consequence we now compute this information pro-actively.
Thus if the client decides to skip the loop based on the dependences
we've computed the checks unnecessarily. In order to see whether this
was a significant overhead I checked compile time on SPEC2k6 LTO bitcode
files. The change was in the noise.
The checks are generated in canCheckPtrAtRT, at the same place where we
used to call groupChecks to merge checks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244368 91177308-0d34-0410-b5e6-96231b3b80d8
PrettyStackTraceHead is a LLVM_THREAD_LOCAL, which means it's just a global
in LLVM_ENABLE_THREADS=NO builds. If a CrashRecoveryContext is used with
code that uses PrettyStackEntries, and a crash happens, PrettyStackTraceHead is
currently not reset to its pre-crash value. These functions make it possible
to add a cleanup to such code that does this.
(Not reseting the value then causes the assert in ~PrettyStackTraceEntry() to
fire if the code outside of the CrashRecoveryContext also uses
PrettyStackEntries -- for example, clang when building a module.)
Part of PR11974.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244338 91177308-0d34-0410-b5e6-96231b3b80d8
NFC patch for current users, but llvm-dsymutil will use the new
functionality to adapt to the input linetable.
Based on a patch by Adrian Prantl.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244318 91177308-0d34-0410-b5e6-96231b3b80d8
lld might end up using a small part of this, but it will be in a much
refactored form. For now this unblocks avoiding the full section scan in the
ELFFile constructor.
This also has a (very small) error handling improvement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244282 91177308-0d34-0410-b5e6-96231b3b80d8
TerminateInst can't have a name because it doesn't produce a result. No
functionality change is intended, this is just a cleanup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244276 91177308-0d34-0410-b5e6-96231b3b80d8
libclang uses a CrashRecoveryContext, and building a module does too. If a
module gets built through libclang, nested CrashRecoveryContexts are used. They
work fine with threads as things are stored in ThreadLocal variables, but in
LLVM_ENABLE_THREADS=OFF builds the two recovery contexts would write to the
same globals.
To fix, keep active CrashRecoveryContextImpls in a list and have the global
point to the innermost one, and do something similar for
tlIsRecoveringFromCrash.
Necessary (but not sufficient) for PR11974 and PR20325
http://reviews.llvm.org/D11770
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244251 91177308-0d34-0410-b5e6-96231b3b80d8
iisUnmovableInstruction() had a list of instructions hardcoded which are
considered unmovable. The list lacked (at least) an entry for the va_arg
and cmpxchg instructions.
Fix this by introducing a new Instruction::mayBeMemoryDependent()
instead of maintaining another instruction list.
Patch by Matthias Braun <matze@braunis.de>.
Differential Revision: http://reviews.llvm.org/D11577
rdar://problem/22118647
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244244 91177308-0d34-0410-b5e6-96231b3b80d8
It adds a new constructor, which takes a std::function predicate function that
is run at the beginning of shrink wrapping to determine whether the optimization
should run on the given machine function. The std::function can be overridden by
each target, allowing target-specific decisions to be made on each machine
function.
This is necessary for PowerPC, as the decision to run shrink wrapping is
partially based on the ABI. Futhermore, this operates nicely with the GCC iFunc
capability, which allows option overrides on a per-function basis.
Phabricator: http://reviews.llvm.org/D11421
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244235 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first mechanical step in preparation for making this and all
the other alias analysis passes available to the new pass manager. I'm
factoring out all the totally boring changes I can so I'm moving code
around here with no other changes. I've even minimized the formatting
churn.
I'll reformat and freshen comments on the interface now that its located
in the right place so that the substantive changes don't triger this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244197 91177308-0d34-0410-b5e6-96231b3b80d8
around a DataLayout interface in favor of directly querying DataLayout.
This wrapper specifically helped handle the case where this no
DataLayout, but LLVM now requires it simplifynig all of this. I've
updated callers to directly query DataLayout. This in turn exposed
a bunch of places where we should have DataLayout readily available but
don't which I've fixed. This then in turn exposed that we were passing
DataLayout around in a bunch of arguments rather than making it readily
available so I've also fixed that.
No functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244189 91177308-0d34-0410-b5e6-96231b3b80d8
This commit implements the initial serialization of the machine operand target
flags. It extends the 'TargetInstrInfo' class to add two new methods that help
to provide text based serialization for the target flags.
This commit can serialize only the X86 target flags, and the target flags for
the other targets will be serialized in the follow-up commits.
Reviewers: Duncan P. N. Exon Smith
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244185 91177308-0d34-0410-b5e6-96231b3b80d8
This is intended to help support the idiom of a class that has some
other objects (or multiple arrays of different types of objects)
appended on the end, which is used quite heavily in clang.
Differential Revision: http://reviews.llvm.org/D11272
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244164 91177308-0d34-0410-b5e6-96231b3b80d8
1. Create a utility function normalizeEdgeWeights() in MachineBranchProbabilityInfo that normalizes a list of edge weights so that the sum of then can fit in uint32_t.
2. Provide an interface in MachineBasicBlock to normalize its successors' weights.
3. Add a flag in MachineBasicBlock that tracks whether its successors' weights are normalized.
4. Provide an overload of getSumForBlock that accepts a non-const pointer to a MBB so that it can force normalizing this MBB's successors' weights.
5. Update several uses of getSumForBlock() by eliminating the once needed weight scale.
Differential Revision: http://reviews.llvm.org/D11442
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244154 91177308-0d34-0410-b5e6-96231b3b80d8
pass manager.
This never worked, and won't ever work. It was actually why I ended up
building the LazyCallGraph set of code which is more more effectively
wired up to the new pass manager. This accidentally got committed when
I was trying to land a cleanup of the code organization in the other
parts of this file. =[ My bad, but fortunately Dave was keen eyed enough
to spot that this code couldn't possibly work. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244127 91177308-0d34-0410-b5e6-96231b3b80d8
The only place that tries to return a CallGraph by value
(CallGraphAnalysis::run) doesn't seem to be used right now, but it's a
reasonable bit of cleanup anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244122 91177308-0d34-0410-b5e6-96231b3b80d8
LoadedObjectInfo was depending on the implicit copy ctor in the presence
of a user-declared dtor. Default (and protect) it in the base class and
make the devired classes final to avoid any risk of a public API that
would enable slicing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244112 91177308-0d34-0410-b5e6-96231b3b80d8
rather than 'unsigned' for their costs.
For something like costs in particular there is a natural "negative"
value, that of savings or saved cost. As a consequence, there is a lot
of code that subtracts or creates negative values based on cost, all of
which is prone to awkwardness or bugs when dealing with an unsigned
type. Similarly, we *never* want these values to wrap, as that would
cause Very Bad code generation (likely percieved as an infinite loop as
we try to emit over 2^32 instructions or some such insanity).
All around 'int' seems a much better fit for these basic metrics. I've
added asserts to ensure that at least the TTI interface never returns
negative numbers here. If we ever have a use case for negative numbers,
we can remove this, but this way a bug where someone used '-1' to
produce a 'very large' cost will be caught by the assert.
This passes all tests, and is also UBSan clean.
No functional change intended.
Differential Revision: http://reviews.llvm.org/D11741
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244080 91177308-0d34-0410-b5e6-96231b3b80d8
To get the successors of a BB we currently do successors(BB) which
ultimately walks the successors of the BB's terminator.
This moves the iterator to TerminatorInst as thats what we're actually
using to do the iteration, and adds a member function to TerminatorInst
to allow us to iterate directly over successors given an instruction.
For example, we can now do
for (auto *Succ : BI->successors())
instead of
for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i)
Reviewed by Tobias Grosser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244074 91177308-0d34-0410-b5e6-96231b3b80d8
std::copy does not work for non-trivially copyable classes when we're
copying into uninitialized memory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243995 91177308-0d34-0410-b5e6-96231b3b80d8