Rewrite the checks from r233164 that I temporarily disabled in r233165.
It turns out that the line-tables only debug info we emit from `llc` is
(intentionally) different on Linux than on Darwin. r218129 started
skipping emission of subprograms with no inlined subroutines, and
r218702 was a spiritual revert of that behaviour for Darwin.
I think we can still test this in a platform-neutral way.
- Stop checking for the possibly missing `DW_TAG_subprogram` defining
the debug info for the real version of `@foo`.
- Start checking the line tables, ensuring that the right debug info
was used to generate them (grabbing `DW_AT_low_pc` from the compile
unit).
- I changed up the line numbers used in the "weak" version so it's
easier to follow.
This should hopefully finish off PR22792.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233207 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of dropping subprograms that have been overridden, just set
their function pointers to `nullptr`. This is a minor adjustment to the
stop-gap fix for PR21910 committed in r224487, and fixes the crasher
from PR22792.
The problem that r224487 put a band-aid on: how do we find the canonical
subprogram for a `Function`? Since the backend currently relies on
`DebugInfoFinder` (which does a naive in-order traversal of compile
units and picks the first subprogram) for this, r224487 tried dropping
non-canonical subprograms.
Dropping subprograms fails because the backend *also* builds up a map
from subprogram to compile unit (`DwarfDebug::SPMap`) based on the
subprogram lists. A missing subprogram causes segfaults later when an
inlined reference (such as in this testcase) is created.
Instead, just drop the `Function` pointer to `nullptr`, which nicely
mirrors what happens when an already-inlined `Function` is optimized
out. We can't really be sure that it's the same definition anyway, as
the testcase demonstrates.
This still isn't completely satisfactory. Two flaws at least that I can
think of:
- I still haven't found a straightforward way to make this symmetric
in the IR. (Interestingly, the DWARF output is already symmetric,
and I've tested for that to be sure we don't regress.)
- Using `DebugInfoFinder` to find the canonical subprogram for a
function is kind of crazy. We should just attach metadata to the
function, like this:
define weak i32 @foo(i32, i32) !dbg !MDSubprogram(...) {
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233164 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232184 91177308-0d34-0410-b5e6-96231b3b80d8
We would set the body of a struct type (therefore making it non-opaque)
but were forgetting to move it to the non-opaque set.
Fixes pr22807.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231442 91177308-0d34-0410-b5e6-96231b3b80d8
Move the specialized metadata nodes for the new debug info hierarchy
into place, finishing off PR22464. I've done bootstraps (and all that)
and I'm confident this commit is NFC as far as DWARF output is
concerned. Let me know if I'm wrong :).
The code changes are fairly mechanical:
- Bumped the "Debug Info Version".
- `DIBuilder` now creates the appropriate subclass of `MDNode`.
- Subclasses of DIDescriptor now expect to hold their "MD"
counterparts (e.g., `DIBasicType` expects `MDBasicType`).
- Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp`
for printing comments.
- Big update to LangRef to describe the nodes in the new hierarchy.
Feel free to make it better.
Testcase changes are enormous. There's an accompanying clang commit on
its way.
If you have out-of-tree debug info testcases, I just broke your build.
- `upgrade-specialized-nodes.sh` is attached to PR22564. I used it to
update all the IR testcases.
- Unfortunately I failed to find way to script the updates to CHECK
lines, so I updated all of these by hand. This was fairly painful,
since the old CHECKs are difficult to reason about. That's one of
the benefits of the new hierarchy.
This work isn't quite finished, BTW. The `DIDescriptor` subclasses are
almost empty wrappers, but not quite: they still have loose casting
checks (see the `RETURN_FROM_RAW()` macro). Once they're completely
gutted, I'll rename the "MD" classes to "DI" and kill the wrappers. I
also expect to make a few schema changes now that it's easier to reason
about everything.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231082 91177308-0d34-0410-b5e6-96231b3b80d8
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230794 91177308-0d34-0410-b5e6-96231b3b80d8
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
This commit makes the following changes:
- Stop issuing a warning when the triples' string representations do not match
exactly if the Triple objects generated from the strings compare equal.
- On Apple platforms, choose the triple that has the larger minimum version
number.
rdar://problem/16743513
Differential Revision: http://reviews.llvm.org/D7591
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228999 91177308-0d34-0410-b5e6-96231b3b80d8
This commit moves `MDLocation`, finishing off PR21433. There's an
accompanying clang commit for frontend testcases. I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.
This changes the schema for `DebugLoc` and `DILocation` from:
!{i32 3, i32 7, !7, !8}
to:
!MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)
Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226048 91177308-0d34-0410-b5e6-96231b3b80d8
Create new copies of distinct `MDNode`s instead of following the
uniquing `MDNode` logic.
Just like self-references (or other cycles), `MapMetadata()` creates a
new node. In practice most calls use `RF_NoModuleLevelChanges`, in
which case nothing is duplicated anyway.
Part of PR22111.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225476 91177308-0d34-0410-b5e6-96231b3b80d8
`MDNode::replaceOperandWith()` changes all instances of metadata. Stop
using it when linking module flags, since (due to uniquing) the flag
values could be used by other metadata.
Instead, use new API `NamedMDNode::setOperand()` to update the reference
directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225397 91177308-0d34-0410-b5e6-96231b3b80d8
In order to make comdats always explicit in the IR, we decided to make
the syntax a bit more compact for the case of a GlobalObject in a
comdat with the same name.
Just dropping the $name causes problems for
@foo = globabl i32 0, comdat
$bar = comdat ...
and
declare void @foo() comdat
$bar = comdat ...
So the syntax is changed to
@g1 = globabl i32 0, comdat($c1)
@g2 = globabl i32 0, comdat
and
declare void @foo() comdat($c1)
declare void @foo() comdat
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225302 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r224416, reapplying r224389. The buildbots hadn't
recovered after my revert, waiting until David reverted a couple of his
commits. It looks like it was just bad timing (where we were both
modifying code related to the same assertion). Trying again...
Here's the original text:
When a function gets replaced by `ModuleLinker`, drop superseded
subprograms. This ensures that the "first" subprogram pointing at a
function is the same one that `!dbg` references point at.
This is a stop-gap fix for PR21910. Notably, this fixes Release+Asserts
bootstraps that are currently asserting out in
`LexicalScopes::initialize()` due to the explicit instantiations in
`lib/IR/Dominators.cpp` eventually getting replaced by -argpromotion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224487 91177308-0d34-0410-b5e6-96231b3b80d8
When a function gets replaced by `ModuleLinker`, drop superseded
subprograms. This ensures that the "first" subprogram pointing at a
function is the same one that `!dbg` references point at.
This is a stop-gap fix for PR21910. Notably, this fixes Release+Asserts
bootstraps that are currently asserting out in
`LexicalScopes::initialize()` due to the explicit instantiations in
`lib/IR/Dominators.cpp` eventually getting replaced by -argpromotion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224389 91177308-0d34-0410-b5e6-96231b3b80d8
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224257 91177308-0d34-0410-b5e6-96231b3b80d8
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223802 91177308-0d34-0410-b5e6-96231b3b80d8
We were already lazily linking functions, but all GlobalValues can be treated
uniformly for this.
The test updates are to ensure that a given GlobalValue is still linked in.
This fixes pr21494.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223681 91177308-0d34-0410-b5e6-96231b3b80d8
This is just testing the largest merge mode for comdats. No need to use
hard to read names and fancy types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223665 91177308-0d34-0410-b5e6-96231b3b80d8
When lazy reading a module, the types used in a function will not be visible to
a TypeFinder until the body is read.
This patch fixes that by asking the module for its identified struct types.
If a materializer is present, the module asks it. If not, it uses a TypeFinder.
This fixes pr21374.
I will be the first to say that this is ugly, but it was the best I could find.
Some of the options I looked at:
* Asking the LLVMContext. This could be made to work for gold, but not currently
for ld64. ld64 will load multiple modules into a single context before merging
them. This causes us to see types from future merges. Unfortunately,
MappedTypes is not just a cache when it comes to opaque types. Once the
mapping has been made, we have to remember it for as long as the key may
be used. This would mean moving MappedTypes to the Linker class and having
to drop the Linker::LinkModules static methods, which are visible from C.
* Adding an option to ignore function bodies in the TypeFinder. This would
fix the PR by picking the worst result. It would work, but unfortunately
we are currently quite dependent on the upfront type merging. I will
try to reduce our dependency, but it is not clear that we will be able
to get rid of it for now.
The only clean solution I could think of is making the Module own the types.
This would have other advantages, but it is a much bigger change. I will
propose it, but it is nice to have this fixed while that is discussed.
With the gold plugin, this patch takes the number of types in the LTO clang
binary from 52817 to 49669.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223215 91177308-0d34-0410-b5e6-96231b3b80d8
The original patch would fail when:
* A dst opaque type (%A) is matched with a src type (%A).
* A src opaque (%E) type is then speculatively matched with %A and the
speculation fails afterward.
* When rolling back the speculation we would cancel the source %A to dest
%A mapping.
The fix is to keep an explicit list of which resolutions are speculative.
Original message:
Fix overly aggressive type merging.
If we find out that two types are *not* isomorphic, we learn nothing about
opaque sub types in both the source and destination.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222923 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the order in which different types are passed to get, but
one order is not inherently better than the other.
The main motivation is that this simplifies linkDefinedTypeBodies now that
it is only linking "real" opaque types. It is also means that we only have to
call it once and that we don't need getImpl.
A small change in behavior is that we don't copy type names when resolving
opaque types. This is an improvement IMHO, but it can be added back if
desired. A test is included with the new behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222764 91177308-0d34-0410-b5e6-96231b3b80d8
If we find out that two types are *not* isomorphic, we learn nothing about
opaque sub types in both the source and destination.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222727 91177308-0d34-0410-b5e6-96231b3b80d8
Change uniquing from a `FoldingSet` to a `DenseSet` with custom
`DenseMapInfo`. Unfortunately, this doesn't save any memory, since
`DenseSet<T>` is a simple wrapper for `DenseMap<T, char>`, but I'll come
back to fix that later.
I used the name `GenericDenseMapInfo` to the custom `DenseMapInfo` since
I'll be splitting `MDNode` into two classes soon: `MDNodeFwdDecl` for
temporaries, and `GenericMDNode` for everything else.
I also added a non-debug-info reduced version of a type-uniquing test
that started failing on an earlier draft of this patch.
Part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222191 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This makes PIC levels a Module flag attribute, which can be queried by the
backend. The flag is named `PIC Level`, and can have a value of:
0 - Backend-default
1 - Small-model (-fpic)
2 - Large-model (-fPIC)
These match the `-pic-level' command line argument for clang, and the value of the
preprocessor macro `__PIC__'.
Test Plan:
New flags tests specific for the 'PIC Level' module flag.
Tests to be added as part of a future commit for PowerPC, which will use this new API.
Reviewers: rafael, echristo
Reviewed By: rafael, echristo
Subscribers: rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D5882
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221510 91177308-0d34-0410-b5e6-96231b3b80d8
The issue was that linkAppendingVarProto does the full linking job, including
deleting the old dst variable. The fix is just to call it and return early
if we have a GV with appending linkage.
original message:
Refactor duplicated code in liking GlobalValues.
There is quiet a bit of logic that is common to any GlobalValue but was
duplicated for Functions, GlobalVariables and GlobalAliases.
While at it, merge visibility even when comdats are used, fixing pr21415.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221098 91177308-0d34-0410-b5e6-96231b3b80d8
This commit introduces heap-use-after-free detected by ASan. Here is the output
for one of several tests that detect it:
******************** TEST 'LLVM :: Linker/AppendingLinkage.ll' FAILED ********************
Command Output (stderr):
--
=================================================================
==2122==ERROR: AddressSanitizer: heap-use-after-free on address 0x60c00000b9c8 at pc 0x0000005d05d1 bp 0x7fff64ed27c0 sp 0x7fff64ed27b8
READ of size 4 at 0x60c00000b9c8 thread T0
#0 0x5d05d0 in llvm::GlobalValue::setUnnamedAddr(bool) /usr/local/google/home/chandlerc/src/llvm/build/../include/llvm/IR/GlobalValue.h:115:35
#1 0x69fff1 in (anonymous namespace)::ModuleLinker::linkGlobalValueProto(llvm::GlobalValue*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1041:5
#2 0x697229 in (anonymous namespace)::ModuleLinker::run() /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1485:9
#3 0x696542 in llvm::Linker::linkInModule(llvm::Module*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1621:10
#4 0x4a2db7 in main /usr/local/google/home/chandlerc/src/llvm/build/../tools/llvm-link/llvm-link.cpp:116:9
#5 0x7f4ae61e5ec4 in __libc_start_main /build/buildd/eglibc-2.19/csu/libc-start.c:287
#6 0x41eb71 in _start (/usr/local/google/home/chandlerc/src/llvm/build/bin/llvm-link+0x41eb71)
0x60c00000b9c8 is located 72 bytes inside of 128-byte region [0x60c00000b980,0x60c00000ba00)
freed by thread T0 here:
#0 0x4a1e6b in operator delete(void*) /usr/local/google/home/chandlerc/src/llvm/opt-build/../projects/compiler-rt/lib/asan/asan_new_delete.cc:94:3
#1 0x5d1a7a in llvm::iplist<llvm::GlobalVariable, llvm::ilist_traits<llvm::GlobalVariable> >::erase(llvm::ilist_iterator<llvm::GlobalVariable>) /usr/local/google/home/chandlerc/src/llvm/build/../inclu
de/llvm/ADT/ilist.h:466:5
#2 0x5d1980 in llvm::GlobalVariable::eraseFromParent() /usr/local/google/home/chandlerc/src/llvm/build/../lib/IR/Globals.cpp:204:3
#3 0x6a8a4d in (anonymous namespace)::ModuleLinker::linkAppendingVarProto(llvm::GlobalVariable*, llvm::GlobalVariable const*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.
cpp:980:3
#4 0x6a7403 in (anonymous namespace)::ModuleLinker::linkGlobalVariableProto(llvm::GlobalVariable const*, llvm::GlobalValue*, bool) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkMod
ules.cpp:1074:11
#5 0x69ff4e in (anonymous namespace)::ModuleLinker::linkGlobalValueProto(llvm::GlobalValue*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1028:13
#6 0x697229 in (anonymous namespace)::ModuleLinker::run() /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1485:9
#7 0x696542 in llvm::Linker::linkInModule(llvm::Module*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1621:10
#8 0x4a2db7 in main /usr/local/google/home/chandlerc/src/llvm/build/../tools/llvm-link/llvm-link.cpp:116:9
#9 0x7f4ae61e5ec4 in __libc_start_main /build/buildd/eglibc-2.19/csu/libc-start.c:287
previously allocated by thread T0 here:
#0 0x4a192b in operator new(unsigned long) /usr/local/google/home/chandlerc/src/llvm/opt-build/../projects/compiler-rt/lib/asan/asan_new_delete.cc:62:35
#1 0x61d85c in llvm::User::operator new(unsigned long, unsigned int) /usr/local/google/home/chandlerc/src/llvm/build/../lib/IR/User.cpp:57:19
#2 0x6a7525 in (anonymous namespace)::ModuleLinker::linkGlobalVariableProto(llvm::GlobalVariable const*, llvm::GlobalValue*, bool) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkMod
ules.cpp:1100:3
#3 0x69ff4e in (anonymous namespace)::ModuleLinker::linkGlobalValueProto(llvm::GlobalValue*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1028:13
#4 0x697229 in (anonymous namespace)::ModuleLinker::run() /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1485:9
#5 0x696542 in llvm::Linker::linkInModule(llvm::Module*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1621:10
#6 0x4a2db7 in main /usr/local/google/home/chandlerc/src/llvm/build/../tools/llvm-link/llvm-link.cpp:116:9
#7 0x7f4ae61e5ec4 in __libc_start_main /build/buildd/eglibc-2.19/csu/libc-start.c:287
SUMMARY: AddressSanitizer: heap-use-after-free /usr/local/google/home/chandlerc/src/llvm/build/../include/llvm/IR/GlobalValue.h:115 llvm::GlobalValue::setUnnamedAddr(bool)
Shadow bytes around the buggy address:
0x0c187fff96e0: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00
0x0c187fff96f0: 00 00 00 00 00 00 00 fa fa fa fa fa fa fa fa fa
0x0c187fff9700: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fa
0x0c187fff9710: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00
0x0c187fff9720: 00 00 00 00 00 00 00 00 fa fa fa fa fa fa fa fa
=>0x0c187fff9730: fd fd fd fd fd fd fd fd fd[fd]fd fd fd fd fd fd
0x0c187fff9740: fa fa fa fa fa fa fa fa fd fd fd fd fd fd fd fd
0x0c187fff9750: fd fd fd fd fd fd fd fa fa fa fa fa fa fa fa fa
0x0c187fff9760: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0x0c187fff9770: fa fa fa fa fa fa fa fa fd fd fd fd fd fd fd fd
0x0c187fff9780: fd fd fd fd fd fd fd fd fa fa fa fa fa fa fa fa
Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
Heap right redzone: fb
Freed heap region: fd
Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3
Stack partial redzone: f4
Stack after return: f5
Stack use after scope: f8
Global redzone: f9
Global init order: f6
Poisoned by user: f7
Container overflow: fc
Array cookie: ac
ASan internal: fe
==2122==ABORTING
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221096 91177308-0d34-0410-b5e6-96231b3b80d8
There is quiet a bit of logic that is common to any GlobalValue but was
duplicated for Functions, GlobalVariables and GlobalAliases.
While at it, merge visibility even when comdats are used, fixing pr21415.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221014 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219010 91177308-0d34-0410-b5e6-96231b3b80d8
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218914 91177308-0d34-0410-b5e6-96231b3b80d8