All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318490 91177308-0d34-0410-b5e6-96231b3b80d8
The comparator passed to std::sort must provide a strict weak ordering;
otherwise, the behavior is undefined.
Fixes an assertion failure generating debug info for globals
split by GlobalOpt. I have a testcase, but not sure how to reduce it,
so not included here. (Someone else came up with a testcase, but I
can't reproduce the crash with it, presumably because my version of LLVM
ends up sorting the array differently.)
This isn't really a complete fix (see the FIXME in the patch), but at
least it doesn't have undefined behavior.
Differential Revision: https://reviews.llvm.org/D38830
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315619 91177308-0d34-0410-b5e6-96231b3b80d8
While this shouldn't be necessary anymore, we have cases where we run
into the assertion below, i.e. cases with two non-fragment entries for the
same variable at different frame indices.
This should be fixed, but for now, we should revert to a version that
does not trigger asserts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315576 91177308-0d34-0410-b5e6-96231b3b80d8
Since r315388 we have a shorter way to say this, so we'll replace
MI->getParent()->getParent() with MI->getMF() in a few places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315390 91177308-0d34-0410-b5e6-96231b3b80d8
Some passes might duplicate calls to llvm.dbg.declare creating
duplicate frame index expression which currently trigger an assertion
which is meant to catch erroneous, overlapping fragment declarations.
But identical frame index expressions are just redundant and don't
actually conflict with each other, so we can be more lenient and just
ignore the duplicates.
Reviewers: aprantl, rnk
Subscribers: llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D38540
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315279 91177308-0d34-0410-b5e6-96231b3b80d8
A prologue-end line record is emitted with an incorrect associated address,
which causes a debugger to show the beginning of function body to be inside
the prologue.
Patch written by Carlos Alberto Enciso.
Differential Revision: https://reviews.llvm.org/D37625
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313047 91177308-0d34-0410-b5e6-96231b3b80d8
Chromium's gold build seems to have trouble with this (gold produces
errors) - not sure if it's gold that's not coping with the valid
representation, or a bug in the implementation in LLVM, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309630 91177308-0d34-0410-b5e6-96231b3b80d8
Missed the resetting base address selections when going from a base
address version to zero base address for non-base-addressed entries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309529 91177308-0d34-0410-b5e6-96231b3b80d8
(from comments in the test)
Group ranges in a range list that apply to the same section and use a base
address selection entry to reduce the number of relocations to one reloc per
section per range list. DWARF5 debug_rnglist will be more efficient than this
in terms of relocations, but it's still better than one reloc per entry in a
range list.
This is an object/executable size tradeoff - shrinking objects, but growing
the linked executable. In one large binary tested, total object size (not just
debug info) shrank by 16%, entirely relocation entries. Linked executable
grew by 4%. This was with compressed debug info in the objects, uncompressed
in the linked executable. Without compression in the objects, the win would be
smaller (the growth of debug_ranges itself would be more significant).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309526 91177308-0d34-0410-b5e6-96231b3b80d8
This can come up in ThinLTO & wastes space & makes degenerate IR.
As per the added FIXME, ultimately, local imported entities should hang
off the function and that way the imported entity list on the CU can be
tested for emptiness like all the other CU lists.
(function-attached local imported entities are probably also the best
path forward for fixing how imported entities are handled both in
cross-module use (currently, while ThinLTO preserves the imported
entities, they would not get used at the imported inlined location -
only in the abstract origin that appears in the partial CU created by
the import (which isn't emitted under Fission due to cross-CU
limitations there)) and to reduce the number of points where imported
entities are emitted (they're currently emitted into every inlined
instance, concrete instance, and abstract origin - they should only go
in teh abstract origin if there is one, otherwise in the concrete
instance - but this requires lots of delayed handling and wiring up,
same as abstract variables & subprograms))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309354 91177308-0d34-0410-b5e6-96231b3b80d8
Local imported entities at the top level of a subprogram were being
handled differently from those in nested scopes - that different
handling would cause pseudo concrete out-of-line definitions to be
created (but without any of their attributes, nor an abstract_origin) in
the case where there was no real concrete definition.
These local imported entities also only appeared in the concrete
definition where those imported entities in nested scopes appear in all
cases (abstract, concrete, and inlined). This change at least makes top
level case handle the same as the others - though there's a FIXME to
improve this to /only/ emit them into the abstract origin (though this
requires more plumbing - like the abstract subprogram and variable
handling that must defer population until the end of the unit to
discover if there is an abstract origin, or only a standalone concrete
definition).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309237 91177308-0d34-0410-b5e6-96231b3b80d8
This is a better fix than r308708 for the problem introduced in
r304020. It restores the skeleton CU testcases modified by that commit
to their original form and most importantly ensures that
frontend-generated skeleton CUs (such as used to point to Clang
modules) come after the regular CUs. This broke for DICompileUnit
nodes that don't have any immediate children because they are now
constructed lazily instead of the order in which they are listed in
!llvm.dbg.cu. After this commit we still don't guarantee that order,
but we do guarantee that empty skeletons come last.
Shipping versions of LLDB are very sensitive to the ordering of
CUs. I'll track a fix for LLDB to be more permissive separately.
This fixes a test failure in the LLDB testsuite.
rdar://problem/33357252
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309154 91177308-0d34-0410-b5e6-96231b3b80d8
The instruction it falls over on is an IMPLICT_DEF that also happens
to be the only instruction in its lexical scope. That LexicalScope has
never been created because its range is empty. This patch skips over
all meta-instructions instead of just DBG_VALUEs.
Thanks to David Blaikie for providing a testcase!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@305853 91177308-0d34-0410-b5e6-96231b3b80d8
For the following motivating example
bool c();
void f();
bool start() {
bool result = c();
if (!c()) {
result = false;
goto exit;
}
f();
result = true;
exit:
return result;
}
we would previously generate a single DW_AT_const_value(1) because
only the DBG_VALUE in the second-to-last basic block survived
codegen. This patch improves the heuristic used to determine when a
DBG_VALUE is available at the beginning of its variable's enclosing
lexical scope:
- Stop giving singular constants blanket permission to take over the
entire scope. There is still a special case for constants in the
function prologue that we also miight want to retire later.
- Use the lexical scope information to determine available-at-entry
instead of proximity to the function prologue.
After this patch we generate a location list with a more accurate
narrower availability for the constant true value. As a pleasant side
effect, we also generate inline locations instead of location lists
where a loacation covers the entire range of the enclosing lexical
scope.
Measured on compiling llc with four targets this doesn't have an
effect on compile time and reduces the size of the debug info for llc
by ~600K.
rdar://problem/30286912
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@305599 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: echristo, pcc, aprantl
Reviewed By: aprantl
Subscribers: fhahn, javed.absar, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D33894
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@305386 91177308-0d34-0410-b5e6-96231b3b80d8
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304864 91177308-0d34-0410-b5e6-96231b3b80d8
This is really a workaround for ThinLTO in particular - since it can
import partial CUs that may end up looking very similar/the same as
the same partial import in another ThinLTO compile.
An alternative fix would be to change the DICompileUnit metadata to
include a "primary file" or the like - and when importing for ThinLTO
set the primary file to the name of the DICompileUnit that is being
imported into. This involves changing the schema and would reduce the
excessive uniqueness in the hash that this change creates - allowing
diagnosing of more duplicate CUs than will be caught with this change.
But duplicate CUs can still be caught in non-ThinLTO builds & are mostly
a nuisance rather than a particularly deliberate/effective tool for
finding broken code. (arguably the hash could always include the dwo
file and nothing in fission would break, I think..)
Reapply of r304119 after adding a triple to the test and moving it
to the X86 directory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304130 91177308-0d34-0410-b5e6-96231b3b80d8
When the only use of a CU is for a subprogram that's only emitted into
the using CU (to avoid cross-CU references in DWO files), avoid creating
that CU at all.
Reapply of r304111 after adding a triple to the test and moving it
to the X86 directory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304129 91177308-0d34-0410-b5e6-96231b3b80d8
This is really a workaround for ThinLTO in particular - since it can
import partial CUs that may end up looking very similar/the same as
the same partial import in another ThinLTO compile.
An alternative fix would be to change the DICompileUnit metadata to
include a "primary file" or the like - and when importing for ThinLTO
set the primary file to the name of the DICompileUnit that is being
imported into. This involves changing the schema and would reduce the
excessive uniqueness in the hash that this change creates - allowing
diagnosing of more duplicate CUs than will be caught with this change.
But duplicate CUs can still be caught in non-ThinLTO builds & are mostly
a nuisance rather than a particularly deliberate/effective tool for
finding broken code. (arguably the hash could always include the dwo
file and nothing in fission would break, I think..)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304119 91177308-0d34-0410-b5e6-96231b3b80d8
When the only use of a CU is for a subprogram that's only emitted into
the using CU (to avoid cross-CU references in DWO files), avoid creating
that CU at all.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304111 91177308-0d34-0410-b5e6-96231b3b80d8
Consistent with GCC and addresses a shortcoming with ThinLTO where many
imported CUs may end up being empty (because the functions imported from
them either ended up not being used (and were then discarded, since
they're imported as available_externally) or optimized away entirely).
Test cases previously testing empty CUs (either intentionally, or
because they didn't need anything more complicated) had a trivial 'int'
or similar basic type added to their retained types list.
This is a first order approximation - a deeper implementation could do
things like:
1) Be more lazy about construction of the CU - for example if two CUs
containing a single identical retained type are linked together, with
this change one of the two CUs will be produced but empty (since a
duplicate type won't be produced).
2) Go further and invert all the CU links the same way the subprogram
link is inverted - keep named CU lists of retained types, macros, etc,
and have those link back to the CU. Then if they're emitted, the CU is
emitted, but never otherwise - this would allow the metadata itself to
be dropped earlier too, though it seems unlikely that's an important
optimization as there shouldn't be many CUs relative to the number of
other entities.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304020 91177308-0d34-0410-b5e6-96231b3b80d8
This produced 'strange' DWARF anyway - the CU would have no ranges (or
at least not a range including the inlined code) nor any subprogram or
inlined_subroutine - yet the line table would have entries for these
instructions.
(this actually becomes more relevant with changes coming after this,
where a CU without any contents will be omitted entirely - so there
would be no line table to put this on anyway)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304004 91177308-0d34-0410-b5e6-96231b3b80d8
Previously this code was defensive to the situation in which the debug
info scopes would lead to a different subprogram from the subprogram in
the CU's subprogram list (this could've happened with linkonce
functions, etc as per the comment being removed). Since the CU<>SP link
reversal this is no longer possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303933 91177308-0d34-0410-b5e6-96231b3b80d8
Turns out gold doesn't use the DW_AT_GNU_pubnames to decide whether to
parse the rest of the DIEs when building gdb-index. This causes gold to
trip over LLVM's output when there are DW_FORM_ref_addr present.
Gold does use the presence of a debug_gnu_pub{names,types} entry for the
CU to skip parsing the debug_info portion, so make sure that's included
even when empty (technically, when empty there couldn't be any ref_addr
anyway - it only came up when gmlt didn't produce any (even non-empty)
pubnames - but given what that reveals about gold's implementation, this
seems like a good thing to do for consistency).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303894 91177308-0d34-0410-b5e6-96231b3b80d8
MachineInstructions that don't generate any code (such as
IMPLICIT_DEFs) should not generate any debug info either.
Fixes PR33107.
https://bugs.llvm.org/show_bug.cgi?id=33107
This reapplies r303566 without any modifications. The stage2 build
failures persisted even after reverting this patch, and looking back
through history, it looks like these tests are flaky.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303575 91177308-0d34-0410-b5e6-96231b3b80d8
Turns out that the Fission/Split DWARF package format (DWP) is currently
insufficient to handle cross-CU (ref_addr) references. So for now,
duplicate any debug info needed in these situations:
* inlined_subroutine's abstract_origin
* inlined variable's abstract_origin
* types
Keep the ref_addr behavior in general, including in the split DWARF
inline debug info that can be emitted into the object files for online
symbolication.
Keep a flag to use the old (ref_addr) behavior for testing ways of
addressing this limitation in the DWP tool (& for those not using DWP
packaging).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302858 91177308-0d34-0410-b5e6-96231b3b80d8
Since Split DWARF needs to name the actual .dwo file that is generated,
it can't be known at the time the llvm::Module is produced as it may be
merged with other Modules before the object is generated and that object
may be generated with any name.
By passing the Split DWARF file name when LLVM is producing object code
the .dwo file name in the object file can match correctly.
The support for Split DWARF for implicit modules remains the same -
using metadata to store the dwo name and dwo id so that potentially
multiple skeleton CUs referring to different dwo files can be generated
from one llvm::Module.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301062 91177308-0d34-0410-b5e6-96231b3b80d8
- introduced in r300522 and found via the Swift LLDB testsuite.
The fix is to set the location kind to memory whenever an FrameIndex
location is emitted.
rdar://problem/31707602
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300793 91177308-0d34-0410-b5e6-96231b3b80d8
- introduced in r300522 and found via the Swift LLDB testsuite.
The fix is to set the location kind to memory whenever an FrameIndex
location is emitted.
rdar://problem/31707602
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300790 91177308-0d34-0410-b5e6-96231b3b80d8
The DWARF specification knows 3 kinds of non-empty simple location
descriptions:
1. Register location descriptions
- describe a variable in a register
- consist of only a DW_OP_reg
2. Memory location descriptions
- describe the address of a variable
3. Implicit location descriptions
- describe the value of a variable
- end with DW_OP_stack_value & friends
The existing DwarfExpression code is pretty much ignorant of these
restrictions. This used to not matter because we only emitted very
short expressions that we happened to get right by accident. This
patch makes DwarfExpression aware of the rules defined by the DWARF
standard and now chooses the right kind of location description for
each expression being emitted.
This would have been an NFC commit (for the existing testsuite) if not
for the way that clang describes captured block variables. Based on
how the previous code in LLVM emitted locations, DW_OP_deref
operations that should have come at the end of the expression are put
at its beginning. Fixing this means changing the semantics of
DIExpression, so this patch bumps the version number of DIExpression
and implements a bitcode upgrade.
There are two major changes in this patch:
I had to fix the semantics of dbg.declare for describing function
arguments. After this patch a dbg.declare always takes the *address*
of a variable as the first argument, even if the argument is not an
alloca.
When lowering a DBG_VALUE, the decision of whether to emit a register
location description or a memory location description depends on the
MachineLocation — register machine locations may get promoted to
memory locations based on their DIExpression. (Future) optimization
passes that want to salvage implicit debug location for variables may
do so by appending a DW_OP_stack_value. For example:
DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8
DBG_VALUE, RAX --> DW_OP_reg0 +0
DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0
All testcases that were modified were regenerated from clang. I also
added source-based testcases for each of these to the debuginfo-tests
repository over the last week to make sure that no synchronized bugs
slip in. The debuginfo-tests compile from source and run the debugger.
https://bugs.llvm.org/show_bug.cgi?id=32382
<rdar://problem/31205000>
Differential Revision: https://reviews.llvm.org/D31439
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300522 91177308-0d34-0410-b5e6-96231b3b80d8