This is currently a bit hairier than it needs to be, since depending on where the
split block resides the end ListEntry of the split block may be the end ListEntry
of the original block or a new entry. Some changes to the SlotIndexes updating
should make it possible to eliminate the two cases here.
This also isn't as optimized as it could be. In the future Liveinterval should
probably get a flag that indicates whether the LiveInterval is within a single
basic block. We could ignore all such intervals when splitting an edge.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174870 91177308-0d34-0410-b5e6-96231b3b80d8
present, it currently verifies them with the MachineVerifier, and this passed
all of the test cases in 'make check' (when accounting for existing verifier
errors). There were some assertion failures in the two-address pass, but they
also happened on code without phis and look like they are caused by different
kill flags from LiveIntervals.
The only part that doesn't work is the critical edge splitting heuristic,
because there isn't currently an efficient way to update LiveIntervals after
splitting an edge. I'll probably start by implementing the slow fallback and
test that it works before tackling the fast path for single-block ranges. The
existing code that updates LiveVariables is fairly slow as it is.
There isn't a command-line option for enabling this; instead, just edit
PHIElimination.cpp to require LiveIntervals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174831 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
PHIElimination splits critical edges when it predicts it can resolve
interference and eliminate copies. It doesn't split the edge if the
interference wouldn't be resolved anyway because the phi-use register is
live in the critical edge anyway.
Teach PHIElimination to split loop exiting edges with interference, even
if it wouldn't resolve the interference. This removes the necessary
copies from the loop, which is still an improvement from injecting the
copies into the loop.
The test case demonstrates the improvement. Before:
LBB0_1:
cmpb $0, (%rdx)
leaq 1(%rdx), %rdx
movl %esi, %eax
je LBB0_1
After:
LBB0_1:
cmpb $0, (%rdx)
leaq 1(%rdx), %rdx
je LBB0_1
movl %esi, %eax
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160571 91177308-0d34-0410-b5e6-96231b3b80d8
When a PHI use is <undef>, don't emit a copy in the predecessor block,
but insert an IMPLICIT_DEF instruction instead. This ensures that
virtual register uses are always jointly dominated by defs, even if some
of them are IMPLICIT_DEF.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159121 91177308-0d34-0410-b5e6-96231b3b80d8
Creates a configurable regalloc pipeline.
Ensure specific llc options do what they say and nothing more: -reglloc=... has no effect other than selecting the allocator pass itself. This patch introduces a new umbrella flag, "-optimize-regalloc", to enable/disable the optimizing regalloc "superpass". This allows for example testing coalscing and scheduling under -O0 or vice-versa.
When a CodeGen pass requires the MachineFunction to have a particular property, we need to explicitly define that property so it can be directly queried rather than naming a specific Pass. For example, to check for SSA, use MRI->isSSA, not addRequired<PHIElimination>.
CodeGen transformation passes are never "required" as an analysis
ProcessImplicitDefs does not require LiveVariables.
We have a plan to massively simplify some of the early passes within the regalloc superpass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150226 91177308-0d34-0410-b5e6-96231b3b80d8
1. Added opcode BUNDLE
2. Taught MachineInstr class to deal with bundled MIs
3. Changed MachineBasicBlock iterator to skip over bundled MIs; added an iterator to walk all the MIs
4. Taught MachineBasicBlock methods about bundled MIs
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145975 91177308-0d34-0410-b5e6-96231b3b80d8
This flag is true from isel to register allocation when the machine
function is required to be in SSA form. The TwoAddressInstructionPass
and PHIElimination passes clear the flag.
The SSA flag wil be used by the machine code verifier to check for SSA
form, and eventually an assertion can enforce it in +Asserts builds.
This will catch the common target error of creating machine code with
multiple defs of a virtual register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136532 91177308-0d34-0410-b5e6-96231b3b80d8
It will still return an iterator that points to the first terminator or end(),
but there may be DBG_VALUE instructions following the first terminator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123384 91177308-0d34-0410-b5e6-96231b3b80d8
Print virtual registers numbered from 0 instead of the arbitrary
FirstVirtualRegister. The first virtual register is printed as %vreg0.
TRI::NoRegister is printed as %noreg.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123107 91177308-0d34-0410-b5e6-96231b3b80d8
ScheduleDAGEmit, TwoAddressLowering, and PHIElimination.
This switches the bulk of register copies to using COPY, but many less used
copyRegToReg calls remain.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108050 91177308-0d34-0410-b5e6-96231b3b80d8
into a utility routine, teach it how to update MachineLoopInfo, and
make use of it in MachineLICM to split critical edges on demand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106555 91177308-0d34-0410-b5e6-96231b3b80d8
addresses a longstanding deficiency noted in many FIXMEs scattered
across all the targets.
This effectively moves the problem up one level, replacing eleven
FIXMEs in the targets with eight FIXMEs in CodeGen, plus one path
through FastISel where we actually supply a DebugLoc, fixing Radar
7421831.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106243 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, LiveIntervalAnalysis would infer phi joins by looking for multiply
defined registers. That doesn't work if the phi join is implicitly defined in
all but one of the predecessors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96994 91177308-0d34-0410-b5e6-96231b3b80d8